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CHAPTER 1

INTRODUCTION

1.1 The Rising Capabilities of Machines

Computers are being developed that can handle more
complex tasks than ever before. A major justification for
the development of intelligent machines is that it frees
human beings to do other tasks that are potentially more
enjoyable and fulfilling. Economic justification lies in
the increased productivity of the machine-aided human.

As the number of intelligent machines increases,
however, a workforce capable of directing and supervising
these machines will be needed. The shortage of computer
programmers in modern society shows how the growth in
applications for a new machine (the computer) can outpace
the growth of workers capable of administering it. As
machines become less specialized and can be applied to a
variety of problems, more and more jobs will involve direct
interaction with machines. Either the method of interaction
must be simplified or the people in these positions must be
trained.

With machines performing a larger fraction of tasks in
society, fewer human beings will have occupations dealing
directly with the environment. Instead people will have
jobs supervising machines. Problems are bound to arise in
the interface between the man and the machine.

1.2 The Man-Machine Interface

The interface between man and machine can be examined
on two levels. The first level of interaction is the
physical interface, involving the specific command
vocabulary, the number of buttons that must be pushed, how
they are arranged, and how the machine communicates with the
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operator. The rate of information that can be transmitted
efetie heman/amachine syste will berie Thet moe
efte aha an/amachine aidte will deen just owe
transparent the physical interface, the more the system can
accomplish.

There is another level to the man/machine interface
that is perhaps more important if only because it has been
less extensively examined than the physical interface. This
second level is the cognitive interface. When a man/machine
system is designed, a decision is made to apportion the
components of a task into two segments: a segment that will
be handled by machine and one that will be handled by man.

The points where the duties and responsibilities of the
human interact with those of the machine can be termed the
cognitive interface. While the physical interface can be
defined solely in terms of the hard- and soft-ware
components of the man/machine system, the conceptual
interface must include a consideration of the nature of the
task to be performed, and the method used to deal with it.

The cognitive interface is like the storm front between
a warm air mass and a cold air mass. Both are described as
areas of interaction rather than specific lines. When
someone is near the boundary, it is hard to say just where
it is. Like a storm front the cognitive interface is a
region where confrontation (i.e. bad weather) is most
likely to occur; hence it is interesting to study.
However, because it is a region and not a point, and because
it is dependent of the nature of the tasks it is hard to
come to any general conclusions. But it can be done.

1.3 Motivation for Studying the Conceptual Interface

Computers are very good number crunchers. They
unerringly follow complex instructions and they think very
fast. Humans, on the other hand, tend to be innovative and
can deal with unusual problems taking into account such
criteria as "the political reality of the situation" and the
risk to human life that cannot be well defined. The
designer of man machine systems should try to exploit the
relative strengths of men and machines in formulating a
system.

Unfortunately, there is no guarantee that a system that
is based soley on the strengths of its components will
itself be strong. It is equally important to consider how
the components will interact and communicate. Physical
structures seldom fail due to component failure. Problems
usually arise in the joints between members. Failure due to
component interaction and communication arise in many
diverse systems.
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Consider the United States and the U.S.S.R as possible
partners in the creation of a new economic order. With
agreement on arms control both nations would be able to
realise greater economic growth, improved standards of
living and still be able to give more economic aid to lesser
developed countries. Institutions such as the United
Nations and the Club of Rome are trying build a future based
upon such cooperation between member nations of the world.
However, such cooperation is highly unlikely due to the fear
and the lack of trust which exists across national
boundries. Systems which suppose that the United States and
the Soviet Union wiii act together,' even for mutual benif it,
neglect the psychological barriers that prevent the
components from effective commnunication.

Many systems designed to exploit the strengths of
components have failed because of the interaction between
components. An example that pertains more to the idea of
man-machine interaction involves the use of robots on
certain assembly lines. An assembly procedure involves
performing a long sequence of tasks on a produc.t. Only some
of these tasks can be readily automated. When industrial
robots are developed they replace human workers on the
assembly line.

This strategy will often lead to human workers
surrounded by machines. The human takes a component from a
robot, performs a ta-sk, then gives the part to a second
robot. The lone human is isolated from the world of flesh
and bones. He is paced by the machine feeding parts to him
and he loses his sense of identity; he does not enjoy his
work and his productivity falls. The moral of this story is
that placing robots in jobs that they were best equipped for
does not always ensure an efficient system.

A similar example is the decision by many small
businessmen to buy a small computer for their companies.
They feel that the computer will be able to solve their
accounting problems, reduce the load on their secretaries
and allow for better planning. These are all tasks that
small computers are able to do well and which will free
other employees to do more productive work.

resistance from the workers who will have to use it; often

they are "scared" of it. They don't know how to use theI computer, are unwilling to learn how, and worried that it
will replace them. The employees find excuses not to use
the machine which ultimately ends up discarded in the stock
room.
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1.4 The Role of the System Designer

When a system designer is constructing a man/machine
system, he has some conception of where the conceptual
interface will lie. In deciding which aspects of a task
will be handled by the human and which can be handled by the
machine, the designer makes various assumptions concerning .

the capabilities of the components. Given a choice of
system configurations, the capable designer will try to find
an optimal system. In doing this he will make various

assumptions concerning how the components will interact. if
he makes unrealistic assunptions he is likely to make

In the previous example, the businessman who sought to
improve productivity played the role of the system designer.
While he hoped to exploit the strengths of automation he
neglected to account for the hostility the machine
encountered from his employees. Consequently, a poor
decision was made.

The physical interface has been extensively explored in
much of the human factors literature. Methods of conveying i
information, either commands or reports, between the man and
the machine have been developed and the system designer can
draw on these developments in his design.

The cognitive interface, however, is still far less
documented. Deciding how the man and machine are supposed
to interact in dealing with the task at hand is left to the
designer's intuition. Deciding how the components will in
fact interact is left to the human operator as he becomes
familiar with his job. If supposition and fact do not
coincide, the resulting system will probably be very
inefficient.

This study will look at the cognitive interface and
give some indication to the system designer as to how humans
can be expected to interact with machines. Suppose there
are consistent biases in the way operators deal with
machines. The designer will want to avoid placing the
operator in situations where these biases will prevail lest
the system behave too sub-optimally.

The literature if full of examples of the different
reasons humans act sub-optimally. Questions of utility, of
risk aversion and of perception have all been discussed.
This report, however, is not a study of how human goals and
perceptions of rewards and costs may differ from those
assumed by a system designer. Rather it is an exploration
of the pyschological barriers and biases that exist in human
operators that hinder effective man-machine communication.



CHAPTER 2

MODELING MAN/MACHINE SYSTEMS

In order to explore the impact of the man/machine
interface on the performance of man/machine systems, some
benchmark is required with which to compare this
performance. A natural baseline is "optimal" performance.
The term "optimal" does not refer to the best way of dealing
with the problem that the man/machine system is designed to
handle. Rather it refers to the best strategy that the
human operator can follow acting under the established
constraints of the man/machine configuration. A strategy is
defined as best if it maximizes a given objective function
or criterion for performing the task.

2.1 Defining Man-Machine Systems

The term "man/machine system" can be used to describe
anything from a child playing with a electric train to a
space shuttle mission. In the strictest definitional sense,
all that is required is a human and a machine acting towards
a common goal. The man and the machine do not even have to
be aware of each other's existrnce, as is the case in the
telephone company where human and computer operators work
side-by-side each handling a specific subset of calls.
Additionally, there need be no mention of responsibility,
authority, or the chain of command, in the pure definition.

The analysis in this report does not pretend to
consider all variations of man/machine systems, instead
focusing on a particular subset of interest. This subset is
broad enough to include an area of general interest to the
system designer.

The concern in this report encompasses those
applications of man/machine systems where a human is faced

I
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with a variety of tasks that must be accomplished. These
tasks might include writing a letter or maintaining the
flight path of an airplane. Potentially the human could
complete all the tasks manually. However, the tasks that
must be accomplished may arise fast enough that the
operator's ability is strained. In some cases he does not
have enough time to do all that is required. Consequently,
the human might be supplied with a machine aid capable of
undertaking many of the tasks faced by the system thereby
reducing the stress on the human operator.

While the machine (or computer) may not be able to do
everything the human does, it can handle many tasks
satisfactorily. Some tasks the machine will handle better
or faster than the human.

Computers were first used in application that exploited
their quick number crunching abilities including the dull
tedious jobs that workers previously were burdened with.
These first applications resulted in computers replacing
men. This project deals instead with cases where humans
remain in the system but their productivity is enhanced
through machine aids.

The concern here is with instances where the human is
given the responsibility for maintaining system performance
and the authority to direct the components of the
man/machine system. The human acts as a supervisor
directing the allocation of both his time and the time of
any machine aids subordinate to him. The focus of this
study is on this allocation.

2.1.1 Examples of Man-Machine Systems of Interest

Modern aircraft are outfitted with flight computers
that could feasibly take a plane from Detroit to San Diego
without there even being a pilot in the plane. A pilot
could perform the entire flight himself if he so desired.
This latter option might cause a bit of strain on the pilot
because he has other requirements on his time, such as
talking to ground control, informing the passengers of
turbulence and prominent landmarks, and watching out for
other planes in his airspace. It is no surprise that the
pilot makes use of his flight computer and collision warning
systems. However, it is always the pilot's option to use
these aids. Ultimately he is responsible for the lives of
everyone on board.

The small businessman, with his new personal computer,
is another example of the type of man/machine system
considered in this paper. Various requirements on a
businessman's time crop up over the course of a day.
Letters must be written, sales forecasts must be made,
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inventory must be maintained, and employees must be paid.
The personal computer was bought to help the company deal
with all these tasks, yet it can only do one thing at a
time. The manager must decide which jobs have priority on
the computer and which he must do himself.

With the continued expansion in mricro-processor
applications, many more jobs will become automated. The
potential for machine aids in a variety of jobs is immense.

Someday entire factories will be automated. Only a skeleton
supervisory work force will be necessary to plan production
runs. These people will allocate the resources of the plant
based on current orders and anticipated demand.

2.1.2 Examples of Man-Machine Systems Not Dealt with in
this Study

There are many applications of man-machine systems that
do not fall into the category considered in this report.
Purely automatic systems are one example. These systems are
turned on and then work continuously. There is no operator.
If failures occur then the machine itself must cope.

A household heating system is an example of an
automatic system. Once it is activated it relieves people
of the responsibility for regulating temperature. The
system works continuously and does not have to be reassigned
to the task of adjusting temperature every time temperature
needs to be adjusted. Once activated there is no

interaction between the machine and the humans it serves.

At the other end of the spectrum are machines that
require constant human supervision. A lawn mower, and other
household tools, make tasks easier for the human operator.
However, they cannot simply be assigned to a task and then
left while the operator deals with something else. These
tools instead require constant interaction with the operator
in order to function properly.

2.2 Characteristics of Man/Machine Systems

In modeling man/machine systems it is important to
reflect the important characteristics of these systems. In
these systems a human operator is faced with a variety of
tasks that require attention. The operator is also given
one or more machine aids whose work he supervises. It is

* realistic to assume that the operator seeks to maximize some
reward function as he works.

For simplicity, a unidimensional reward function will
be considered. In life, it can be argued, humans try to
maximize their acquisitions of a variety of attributes
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including money, happiness and vacation time. But these are
global concerns in their life as a whole.

For individual pursuits, such as games or work, it is
an acceptable approximation to assume that their tactical
decisions are based upon maximizing a single objective.
While a human may participate in sports for his health and
well being, his actual play is governed by his desire to
maximize his score. He may choose his occupation for many
diverse reasons, but his goal on a given project is to
maximize profits. For the purposes of analysis this report
will assume a human operator in a system seeks to obtain as
much of some attribute as possible, whether this attribute
be money, or "utility".

In the type of man/machine system considered, the man
decides whether to do the tasks himself or whether to assign
a machine aid to them. We can divide the tasks faced into N
classes. Classes are distinguished by the frequency
(probability) of occurance; how fast they can be dealt
with; and by their effects on the reward function.

We can assign each task class i a mean arrival rate
L(i) [arrivals/unit time]. This corresponds to a mean
arrival time of l/L(i).

Task arrivals will be assumed to havea Poisson
distribution. A Poisson process can be totally specified by
the parameter L(i). Poisson processes are more fully
described in Appendix A.

A second important characteristic of tasks is the time
required to deal with them. A service rate u(i,j) [tasks
served/unit time] represents the mean number of tasks of
class i that can be completed per unit time. The subscript
j is present to indicate whether a man or a machine is
servicing a task. The case of multiple machine aids, having
various abilities is a simple extension of this case.

The service time can be either deterministic or
probabilistic. To simplify the function u(i,j) the effect
of task class i and servicer class j can be separated. One
way is to assume a heirarchy of abilities such that if a
machine is faster at one task than a human, or another
machine, it will be faster at all classes. Mathematically,
this assumption would take the form:

u(i,j)=u(i)*c(j)

where u(i) is independent of the server, j, and the
factors c(j) are independent of task class, i.

Costs and rewards must also be specified in a complete
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characterization of a system. We can define R(i) as the
reward obtained for completing a task. There may also be a
holding cost h(i) that is incurred as long as a task has not
been attended to.

The holding cost represents a penalty for putting off
completion of a task. In reality there is usually an
incentive to finish one's work as early as possible.
Leaving jobs to the last minute means forgoing unforseen
opportunities that arise. In financial matters all costs
and rewards are discounted to their net present value.
Rewards achieved in the future are not as valuable as the
same rewards achieved today. The inclusion of a "holding
cost" in modeling man/machine systems is a simple way of
representing the penalty for procrastination.

Holding cost does not behave exactly like a discount
rate. For the latter, the value of a particular task would
decay exponentially down to zero the longer its undertaking
was put off. For a holding cost, the value would drop
linearly and would become negative if a task remained
unattended for a sufficiently long period.

Another cost in man/machine systems is the cost of
using machine aids. Using machines is not free. There are
energy costs, depreciation, rental fees if the machine is
not owned, and other operating expenses. These costs can be
summarized in a "wage" for the machine help. Every time a
machine in class j is used it incurs a cost w(j) per unit of
time. Avoiding this cost is one reason why an operator
might be hesitant to use machine aids.

h(i) : the holding cost of leaving task i
unattended (cost/time)

R(i) : the reward for completing a member
of task class i (reward units)

w(j) : the cost, or wage, of operating a
machine of type j (cost/time)

1(i) : the mean arrival rate of tasks in
class i (arrivals/time)

u(i,j) : the mean service rate of tasks in
class i by machines in class j
(tasks/time)

Figure 2.1 - Man/machine system characteristics

The reward function that the human operator seeks to
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maximize will be a function of the system variables

s ummarized in Figure 2.1. The exact form of this functional
relation will depend upon the structure of the man/machine
interaction and the tasks the operator faces.

2.3 Characteristics of the Machine Aids

One structural question is whether the machines are
general purpose or whether they are designed for specific
tasks. In an aircraft cockpit, the pilot is supplied with
individual flight computers for heading,for pitch control
and for speed, as well as a collision avoidance system.
Each of these mechanical aids is dedicated to a particular
task and cannot be used for other than its primary function.

A computer, on the other hand, is able to do a variety
of tasks. In companies, the computer can print cheques,
type letters, and record sales: it is a general purpose
machine aid. The-difference between dedicated and general
machine aids is reflected in the parameter u(i,j), but it is
important to remember there is a fundamental difference
between the two modes of system design.I An important consideration is the autonomy of the
machine from the human supervisor. At one extreme are
machines that do not interact with humans at all, such as
the welding robots in factories which consistently perform a
whole series of assigned task with little or no human
intervention. At the other end of the spectrum are machines
like pencil sharpeners and lawn mowers whose actions must be
continually directed by a human operator. These extreme
cases are not of interest in this project; the former
because their is no man/machine interaction to study, and
the latter because they are machines that merely increase
the productivity of a human laborer without changing his
basic strategy for attacking the problem at hand.

Between the extremes, however, there are many types of
man/machine systems. Machines that are capable of
performing a short task, or sub-task, but cannot perform a
whole series of such tasks without being reprogrammed for
each are of interest in this study. The assignment process
can be complex, as in the case of computers that must be
progranmmed before they can attack a problem, or very simple,
as in the case of a pilot switching on his autopilot.

2.4 Characteristics of the Task Environment

Because the design of a man/machine system is heavily
tied to the type of work the system will undertake, a
complete description of the system must include
characteristics of the "task environment". There are basic
differences between the type of task performed by an



automobile driver or aircraft pilot, and by secretaries or
computer programmers.

In the case of pilots, and other vehicle drivers, the
operator normally responds to problems that arise.
Airspeed, direction, cabin pressure and fuel all must be
maintained within some acceptable levels. Actions must be
taken only when indicators fall outside normal limits. When
not actively correcting some problem, the pilot scans his
instruments.

In this type of task environment the number of classes
of tasks, or emergencies, which arise is finite. Also, when
one problem arises, an identical problem cannot arise until
the first is fixed. This type of task environment is called
"cyclic". The operator cycles from one potential problem
area to another dealing with tasks as they arise.

The complementary type of task environment, one which
is faced by computer progammers or secretaries, have
infinite queues. More than one task from the same class can
appear to the operator, and a backlog of work, called a
queue, can arise. In addition to infinite queues there are
cases where arrivals "balk", or leave because of a long
expected wait. The cyclic environment can be considered an
extreme case of balking where no new tasks arrive if there
is even one action-evoking event waiting for processing.

Another important characteristic of the task
environment is the degree to which the machine aid operates
in the same manner as the human. If both attack similar
problems in a similar manner then they can probably trade
off working on the same task. The man and the machine are
interchangable. If one starts a task, the other can finish
it.

Flying an airplane is an example of an interchangable
man/machine system. The pilot can turn the flight computer
on and off at will. He can relieve the machine with no loss
of system performance.

At the opposite extreme is computer programs. Once the
computer has started working on a problem, it cannot be
replaced by a human. The computer and the man work at
different speeds and with different approaches. When one
has started working on a task it can only be replaced if the
operator is willing to discard work already done and start
over.

In task environments where man and machines are
interchangable, the service times for tasks are
approximately the same. When they are not interchangable,
it is often because computers perform certain functions much

I
I
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faster than humans can.

2.5 Normative Models of Human Tasks

When modelling man/machine systems to find some measure
of optimality against which to compare observed performance,
it is necessary to make certain simplifying assumptions
about human beings as decision makers. A human working in
complex environments may get flustered. Further, he may
forget what he has seen and done previously. His decisions
take a finite time to make.

An optimal model of an essentially human task cannot
incorporate these human frailties. Firpt, these frailties
are unpredictable in nature, and second, they make the model
sub-optimal. If they were included there would be nothing
to prevent a person less prone to these weaknesses from
coming along and outperforming the supposedly "optimal"
baseline model. For the sake of analysis, the operator in
the normative model will be assumed to react infinitely fast
to changing circumstances, and to have a perfect memory of
his past actions.

Another concern in the computation of an optimal policy
is the time horizon that the human operator is concerned
with. With an infinite time horizon the human will try to
maximize his steady state performance. A word-processer
operator who faces the same sorts of problems every day is
in a steady-state situation. Other task environments have
finite time horizons. A pilot knows that a given flight
will end after a specified time and his behavior may change
depending on where in his flight plan he finds himself.
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CHAPTER 3

QUEUING THEORY AND THE MODELING OF MULTI-TASK ENVIRONMENTS

3.1 The Language of Queuing Theory

Queuing theory provides a useful vocabulary for
representing multi-task situations. In queuing theory,
customers appear before a service center, where one or more
servers are located. If all servers are occupied the
customer enters a queue and waits for service. When a
customer is served, he leaves the queue and frees a server.
to deal with other customers,

Man/machine systems in multi-task environments can be
considered in an analogous manner. Tasks requiring
processing appear before the man-machine system, where
either the man or his machine aids will deal with them. If
neither is available to "serve" the task it enters a "queue"
and waits for processing.

The above description presents queuing theory in its
simplest form and provides a generic definition of what a
queue is. However, many real-life queues have special
features which differentiate them from the basic model.

one common feature in queues is customer balking. If a
person arrives at a bank and finds he will have to wait for
service he may decide to just walk out. This behavior is
called balking. Balking can alse describe the enforced, as
well as the voluntary, turning aside of customers. Queues
often have a capacity limit. once this capacity is reached,
new arrivals are turned away unserved. A waiting room may
be able to accomodate only N people. If all chairs are
filled, additional customers are not welcome.

Many man/machine systems can be represented as queues
with balking. If a task arrives in front of an operator who
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feels overloaded, then the operator may simply decide to
forget about the task and let someone else handle it.

In an airline cockpit, a pilot responds to
discrepencies between his instrument readings and their
desired levels. The appearance of discrepancies corresponds
to customer arrivals. The queue for discrepencies in
aircraft heading can only contain one "customer" for the
following reason: the heading can be either correct or
incorrect. If the heading is incorrect additional
turbulence may increase its deviation from its desired
state. However the operator only has to deal with heading
once regardless of the magnitude of the discrepency. As far
as the pilot is concerned there is only one task in the
queue requiring service.

Similar to balking is the customer option to "renege".
If a customer is forced to wait for too long he may get fed
up and leave the queue, or renege on his implied request for
service. In a multi-task environment, certain tasks may
crop up that must be dealt with within some time window. A
secretary may have to finish typing a report before a
deadline. If the deadline is missed, the report no longer
needs to be typed and the task leaves the queue.

In man/machine systems it is useful to consider queues
with multiple servers. Tasks enter a queue. They can be
served either by the man or by his machine aids. In systems
considered in this report, where a human operator assigns
tasks to the machine aids, the service facility is said to
have multiple levels. First tasks are pre-processed by the
human supervisor. Tasks then are processed by the machine
aids.

When there is a situation of many task classes it is
convenient to consider each task class as having its own
queue. If one task class is to be given priority for
service over other task classes then those other tasks will
not be served until the high priority queue is completely
empty.



CHAPTER 4

OTHER WORK EXPLORING MULTI-TASK ENVIRONMENTS

4.1 The Tulga Paradigm

To a major degree, this study is an outgrowth of the
work done by Kamil Tulga exploring human decision making in
a dynamic multi-task environment (see Tulga [24,25]). In
Tulga's paradigm, subjects were faced with the problem of
dealing with tasks appearing on a variety of work areas. As
tasks were completed the subject's score would increase, and
tasks left unattended would eventually disappear. The time
before this disappearance, the time required to do a task,
and the score for tasks varied from task to task.

Human behavior was compared to an optimal algorithm.
This algorithm determined the order for dealing with all
current tasks which maximized expected reward. The optimal
ordering, or best path, was executed until a new task
appeared at which point the strategy was reevaluated.

Tulga also showed how with specific simplifying
assumptions, his algorithm could be reduced to encompass
Job-Scheduling and Travelling Salesman problem. The

algorithm uses dynamic programming and some ideas from
Queuing Theory.

Results of Tulga's experimentation include that humans
do not discount future returns as much as they should. The
paradigm also provided a measure of subjective Work Load, or
stress, felt by the operator.

The paradigm considered in my study is similar to
Tulga's in that human subjects are faced with a dynamic
multi-task environment. My study differs from Tulga through
the addition of machine aids to help the operator deal with
tasks. Where Tulga's focused on the way humans ordered
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tasks for processing, my study focuses on the manner they
choose to do those tasks.

Another important difference between the two studies is
that Tulga's subjects had perfect information about the
system. That is, they could see all available tasks and
could instantaneously tell when new tasks arrived. In this
study only one work area is visible at a time. The
operator, while working on one task, cannot tell what else
is expected of him, though he can infer rough probabilities
that other task exists elsewhere based on their past
observed arrival rates.

4.2 Models Based on Queuing Theory

In the Queuing Theory and Operations Research
literature there has been some work in multiple server
queues. Because humans and machine aids can be modelled as
multiple servers, the problem of scheduling customer
arrivals into a mulitple-service structure is the same
problem faced by a human operator allocating tasks to his
machine aids. Unfortunately, most of the operations
research work in multiple-server queues is theoretical.
Very little work has been done experimentally with
human-machine interaction.

One exception to this statement is the work of William
B. Rouse [171. He has looked at situations where humans
and computers have overlapping capabilities and
responsibilities. Both the human and the computer are
assumed to scan some display looking for tasks that require
attention. When such an action-evoking event is found it is
dealt with.

In simulation experiments the level of human computer
feedback, the probability the human will make errors, the
probability the computer will make errors and the relative
productivities at doing tasks for the man and machine were
all varied. Ways of allocating responsibility between the
man and the machine to maximize performance are discussed.

Rouse's experiments differ from the ones in this study
in two important ways. First, most of his experiments are
simulations and do not use actual subjects. Second, his
machine aids are highly autonomous. They search for
action-evoking events and attempt to complete them without
human intervention. In this report, the human operator must
do all searching and then assign machines to tasks if he so
decides. However, Rouse's task environment, where
action-evoking events must be searched for, is very similar
to that used in this study.
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CHAPTER 5

CYCLIC GAME WITH DISTINCT WORK AREAS

5.1 The Experimental Paradigm Used in This Study

In the Tulga paradigm, subjects were able to examine
all work areas with a single glance at any time over the
course of an experiment. In most real life situations, a
human being must gather information sequentially from
various sources. In the extreme, tasks that must be done
are located in physically different locations. When a
businessman is working at his office, he won't be able to
find out about or respond to a broken faucet at home.

Additionally, even when tasks arise in the same
location, an operator may be so preoccupied doing one task
that he will not notice new task arrivals. In the
experimental situation, however, the actual act of doing a
task is not intellectually taxing. An operator can scan
other work areas and plan future strategy when he is
supposedly ''doing' a task.

To simulate the mental and physical separation of the
operator from all but the task he is doing or the work area
he is looking at the following experimental paradigm was
created. A diagram of the playing field is presented in
Figure 5.1. Figure 5.2 is a diagram of the control input
box given to the operator.

In this game there are R classes of tasks that can
possibly arise. For simplicity, only one member from each
task class can appear at any time. Each task class arises
in its specific work area. Only one work area is displayed
at any time. If a task exists in a work area, it is
signified by the display of a box on the work area. To
complete the task the operator must move the task box to the
right end of the work area. The operator can move the task
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Machine Aid Task Box

Score 7T'e

68 94

IASSIGN AEA AA2AR

DO TASKMACHINEl

"X" indicating
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Figure 5.1(b): Diagram of the SUPER playing field
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box currently displayed by pressing the "DO TASK" button on
the control box. Alternately, he can assign a machine to do
the task by pressing the "ASSIGN MACHINE" button.

The operator also has the option of changing the work
area displayed. He makes this transition by pressing the
button on his control box corresponding to the desired work
area. A large X on the playing field indicates the current
work area displayed (see Figure 5.1(b)).

The paradigm is entitled SUPER because the operator
takes an essentially supervisory role over the machine aids.

The key elements in the role of an aircraft pilot are
reflected in SUPER. The pilot scans his control panel
looking for indicators which vary from their desired levels.
If a discrepency is found, he can either correct it himself
or assign his "machine aid". (This machine aid- would be his
flight computer, though the co-pilot could also be
considered a machine aid.) For the pilot, changing work
areas corresponds to his shifting attention amongst the
various displays. Assigning the machine aid corresponds to
the pilot giving instructions to his flight computer, or his
co-pilot.

5.2 Operator Duties in SUPER

In SUPER the operator is faced with R work areas, and
is given the aid of M machines. The task class in each work
area has associated parameters for mean arrival rate, mean
service rate, and reward and holding cost as described in
Chapter 2.

The operator can examine only one area at a time. If a
task exists on the displayed work area the operator has the
option of doing the task himself (i.e. pressing the "DO
TASK" button), assigning a machine to do it, if one is
available (i.e. pressing the "ASSIGNq MACHINE" button), or
doing nothing. of course the operator always has the option
of swicthing to a new work area to attend possible tasks
there.

An operator might want to switch to another work area
for a number of reasons. If he assigns a machine, it is

* unlikely that he would want to wait for the machine to
finish before moving on to deal with tasks on other work

* I areas. if no tasks exists on the current work area the
operator will want to switch because of the probability that
tasks exist elsewhere (unless the task class of the current
work area has a high arrival rate and/or a high reward.).

There are other reasons an operator might not want to
switch to another work area, even if the present one

LL
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contains nothing for him to do. The primary reason is that
transitions between work areas take an exogenously specified
transition time (TT). When the operator gives the command
to switch work areas, the display of current work area goes
blank for TT seconds. Over this interval, the operator can
do nothing constructive. If the transition time were very
long it might pay for the operator to wait for a new task
appearance in his current work area instead of switching to
some unknown one.

There are other reasons an the operator might not want
to switch to other work areas. One such reason is that
there are machines currently dealing with tasks on those
work areas. Even if the other work areas possibly contain
unattended tasks the operator might have a hunch that a task
is about to appear where he is.

Essentially there are only two problems facing a human
in a multi-work area environment. The first is to decide
which work area he wants to be in. That is, he must decide
whether to stay put or to switch to another work area. If
he wants to switch, he must choose his destination. The
second problem to be dealt with arises when a task is
discovered. Should an operator do the task himself, or
should he assign a machine to it thereby, freeing him to
examine other work areas? How an operator faces these two
problems will determine his performance in dealing with his
environment.

5.3 Building the Normative Model of SUPER

It is necessary to find an optimal strategy for dealing
with the game represented in SUPER in order to have some
baseline with which to compare observed operator
performance. Because the nature of the paradigm is so well
defined it should be possible to generate such an optimal
strategy based on the parameters presented.

In determining just which option is the "optimal"
strategy, the assumption is made that the human subject will
try to maximize his net reward (minus costs) over the course
of a simulation. In the analysis operator performance was
made independent of simulation time by considering expected
reward per unit time as the dimension to be maximized. In
an environment with an infinite time horizon, or one long
enough that the operator cannot forsee an immediate end to
his work, an operator will try to increase his absolute
score as fast as possible: he will be trying to maximize
his net reward per unit time.

In a situation where the operator has M machine aids
and faces task arrivals in R work areas, the operator's set
of possible actions can be reduced to a limited number. In
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the general case he will have only R+M+l options. He can do
the task in the current work area himself (1 option); he
can assign one of his machine aids (MI options): he can stay
in the current work area without doing a task (1 option);
or he can make a transition to another work area (R-l
options). At any point in time, the operator's decision
tree will have R+M+l branches.

Naturally, in a specific situations, many of the-e
branches will be inappropriate. For instance, if no t
exists on the current work area then the operator will only
have the options of waiting or transfering to another work
area (R branches). In the case where all machines a'e
identical, the operator will not have to choose between
them. Assigning any machine becomes only one option. The
number of options will be reduced to R+2.

Regardless of the number of options, the particular
branch that is optimal will depend on the particular
situation faced by the operator.

5.3.1 The Decision to Change Work Areas

Consider the decision most often faced by an operator
in a multi-task/multi-work area environment: "When should I
switch from the present work area to another? Should I do
it now or later?" This is not a simple choice to make. The
operator's action will depend upon the likelihood that tasks
exist on other areas, the value of completing those tasks,
the penalty for not doing them and the transition time
required to reach those tasks.

In order to analyse the subtleties of the decision to
change work areas, a simplified version of SUPER was
considered in which there are only two work areas containing
task classes with identical paramete'rs. The use of machine
aids was prohibited in this initial analysis.

In such a simple two-identical-work-area/no-machine
environment it is easy to completely characterize the
strategy employed by an operator. There are two components
to this strategy:

1) If a task exists in the operator's
current work area then he will complete
it. This assumption logically follows
from recognizing that an optimal
strategy is required. In an optimal
strategy the operator will never
transfer, and therefore never find
himself in a work area where he has no
intention of doing tasks. The best the
operator could hope for by switching
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would be to find an identical task in
the other work area.

*2) If no task exists in the operator's
current work area he will wait until the
probability that a task exists elsewhere
exceeds some critical probability, PC.
He will then transfer to the second work
area.

The operator's decision to switch work areas has been
reduced to the single parameter PC which will depend on the
characterics on the task environment summarized in Figure
5.3. Recall that tasks are the same in both work areas.

L arrival rate for each work area
(tasks/time)

u: service rate of tasks by operator
(tasks/time)

h holding cost for tasks (cost/time)

R reward for completing a task (reward)

TT :transition time for movements between

work areas (time)

Figure 5.3 :Task parameters for an environment with

two work areas and no machine aids

The results obtained in an analysis of this two work
area game can be generalized up to situations with many work
areas. In any situation there are really only two classes
of work areas: the one where the operator i.s and the ones
where he is not. By making this distinction any situation
represented by SUPER can be reduced to a two work area
environment.

Additionally, it is likely that PC will take on values
of either zero or one in most situations, corresponding,
respectively, to situations where the operator will switch

F work areas immediately if there is nothing to do and to
situations where he will not switch at all. However, in
some instances PC will be between these extreme values, and
the operator not want to change work areas unless he is
fairly certain he will find a task needing attention at his
destination.

In the two-work-area/no-machine game, choosing the
optimal operator strategy amounts to finding the value of PC
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which miminizes the operator's expected reward per unit
time. By definition, if the probability that a task exists
on the other work area exceeds PC the operator will switch
to the other work area. The probability that a task exists
on a given work area, where no task existed t seconds
earlier, can be computed by knowing the distribution of
arrival times. This distribution is assumed to be
exponential with parameter L, the mean arrival time (see
Appendix A). An exponential distribution has the following
form:

f(t)=EX(t,L)=L*exp(-L*t)

The probability a task exists on another work area, PO,
is simply the probability that the task arrival time is less
than T.

PO(T)= JEX(tL)dt
0

= 1 - exp(-L*T)

By setting PO equal to PC we can determine the time an
operator will wait before returning to a work area he had
previously left. Humans think better in terms of "time"
than in terms of "probability". By setting a critical
probability, PC,we are really specifying a critical waiting
time, tw, for the operator.

PO(tw)=PC
l-exp(-L*tw)=PC

tw=-log(l-PC)/L

For PC equal to one, tw is infinite and the operator
will never transfer from his current work area. The
operator will wait, on average, l/L seconds for tasks to
appear. He will do these tasks, on average, in 1/u seconds
for which he will recieve reward R minus the net holding
cost h/u. The cycle will then start again. Ultimately, a
task will probably appear on the work area the operator
chooses to ignore, which will exercise the holding cost h.
In this steady state situation the net expected reward per
unit time, RPT, can be computed.

R-h/u
RPT(PC=l) = h

1/u + l/L

Sva Unfortunately, RPT is not so easily calculated for
values of PC less than one. When the operator does switch
work areas, the analysis becomes more complex. One method

I
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for dealing with this complexity is to analyse the system
using Markov decision theory (Howard [12]).

In Markov decision theory a probabilistic system is
modeled as being in one of several well-defined states.
When the system is in one of these states it will make a
transition into other states with a specified probability
for each transition. Each transition also has an
assosciated reward. The transition probabilities and
rewards will vary according to the strategy used by the
system controller.

5.3.2 The States in a Two-Identical-Work-Area /
No-Machine Scenario

By looking at the two-work-area/no-machine game at
specific "time windows" corresponding to immediately before
the operator begins work on a task or immediately after a
task is completed, the system can be characterized as having
only four distinct states. At the times of interest the
system will always be in one of the following states:

State 1 : no tasks exist

State 2 : one task exists and it is in the work
area currently being scanned by the
operator

State 3 : one task exists but not in the same
work area as the operator

State 4 : two tasks exist, one in each work area

Because the two work areas contain tasks with identical
parameters the state definitions do not have to distinguish
between the different work areas. All that is important is
whether a solitary task exists in the same work area as the
operater (termed the "current work area"), or in the other
work area.

It is important to note if no task exists in the
current work area the operator cannot tell if the system is
in State 1 or State 3. The operator only has certain
knowledge about the current work area, though he can make
educated guesses about task existence on the other.
Similarly he cannot distinguish between State 2 and State 4.
The operator only knows if a task exists in the current work
area. He knows how long ago he last visited the other work
area and can compute the probability that a task has
appeared there. If the current work area is empty (State 1
or State 3) the operator will wait until that probability
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exceed PC, then he will change work areas. If a task does
exist on the current work area the operator will do it.

Figure 5.4 shows a state diagram of the system complete
with all possible state transitions. T(i,j) denotes a
possible transition from State i to State j.

Consider all the transition from State 1. The operator
will be wait in the current work area until PC is exceeded,
then he will switch. At any time tasks can appear in either
of the two work areas. If a task appears in the current
work area while he is -waiting there, the system will enter
State 2 if nothing has happened on the other work area. If
a task has appeared there, however, the system will have
entered State 4. If nothing happens in the current work
area while the operator is waiting there the system might
still enter State 3, without the operator's knowledge, if a
task appears on other work area.

If the operator decides to leave an unoccupied work
area while the system is in State 1 four possibilities might
occur while he is in transit. A task might appear on his
destination; a task might appear at his point of origin;
tasks might appear in both work areas; or no task appear.
When the operator emerges from his transition, the system
will have transferred to State 2, State 3, State 4 or State
1 respectively.

Suppose the system is in State 2, with a single task on
the current work area. The operator will do this task. If
a task occurs on the other work area, the system will be in
State 3 when the operator finishes his task. If not, the
system will be in State 1.

From State 3, the system can go to only States 2 or 4.
The operator will wait in the unoccupied state and then
transfer to the other one. If a task appears on the current
work area at any point over this time interval the system
will be in State 4. Otherwise it will be in State 2.

If the system is in State 4 then tasks exist on both
work areas. The operator will do the task in the current
work area placing the system immediately in State 3 where
only one task exists and it is in the other work area.

5.3.3 State Probabilities

Each of the transitions in Figure 5.4 is associated
with a state transition probability matrix P(i,j). P(i,j)
is the probability that a transition will occur from State iI to State j, given that the system started in State i. By
definition, the sum of P(i,j) over all possible destination
states j is 1.0. As an example, P(4,3) is one because the

6m-:
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Figure 5.4: State transition diagram for the task
environment with two identical work areas
and no machine aids
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system can only enter State 3 when it is in State 4.
Similarly, P(2,3) equals the probability that a task arrives
in the other work area while the task in the current work
area is being dealt with. Since arrival times are
exponentially distributed, P(2,3) can be calculated as
follows (see Appendix A).

P(2,3)=PO(l/u,L)
P(2, 3)=l-exp(-L/u)

and

P(2,1)=l-P(2,3)
P(2, l)=exp(-L/u)

The value L is the mean arrival rate [arrivals/second)
for the tasks and u is the mean service time El/service
time). The other members of the state transition matrix
P(i,j) can be calculated in a similar manner.

Consider a very long sequence of state transitions. A
certain fraction of these transitions will originate in each
of the four system states. In the long run this fraction
will approach a steady state value called the State
Probability, PI(i). Howard [12] gives the following formula
from which PI can be derived.

PI=PI*P

5.3.4 Expected Reward/Time of an Operator's Strategy

PI(i) gives the fraction of transitions that originate
in. State i. This is different from the fraction of time
spent in each state because the time spent in each state
varies from state to state. The time spent in States 2 and
4 will be equal to the service time of a task (1/u). The
time spent in States I and 3, however, will depend on the
operator's strategy (parameterized by the critical
probability PC) and the arrival rates for tasks.

The expected time spent in each state can be multiplied
by the state probabilities to determine the average time
between transitions.

Similarly, the average reward of each transition can be
computed by multiplying the expected reward for each
transition from State i by the state probabilities, PI(i).
The expected reward for transitions from State i are
computed as the sum over all destinations, j, of
P(i,j)xR(i,j) where R(i,j) is the expected reward for a
transition from State i to State j.

R(4,2) equals the reward for completing a task minus

I
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the holding cost for that task and for the one in the other
work area while the system was in State 4.

R(4, 2)=R-2h/u

Similarly, the expected reward of a transition from
State 2 to State 3 includes the net reward for completing a
task (R-h/u) minus the expected cost for the new task
occurance on the other work area (see Equation A.4 in
Appendix A for a derivation of this cost).

5.3.5 Determining an Optimal Strategy

As described above, an operator strategy can be
completely described by the critical probability, PC. Many
of the transition times and costs will depend on the value
of PC. The expected reward per unit time for the system can
be computed as a function of PC. For any set of task
parameters, reward per time (RPT) can be optimized over PC
in order to generate the best value for PC.

There are three independent quantities that describe a
set of task parameters. These are the ratio of the reward
to the holding cost [RRTH=R/h], the ratio of the service
rate to the arrival rate [RUTL=u/L] and the ratio of the
transition time to the mean arrival time
[PTTL=TT/(I/L)=TT*L]. The best strategy for two cases with
the same values for these three numbers will be the same
regardless of the absolute value of the task parameters.
Figure 5.5 lists the optimal value for PC as a function of
these three parameters.

In general, the best value for PC is either zero,
corresponding to switching work areas immediately, and one
which corresponds to a policy of never changing work areas.
When.transition time (TT) increase PC goes to one because so
much time would be spent in transition that it would not pay
to switch. For small arrival rates (increasing PTTL and
RUTL) PC also increases because as interarrival times grow,
an operator will have a greater likelihood of finding a task
by looking elsewhere than by waiting for one to appear.
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RATIO OF REWARD TO HOLDING COST a 0.0

RUTLz 1.00 2,00 2.50 3.00 4,00
PTTL= ---------------4------------- --------------------

0.00 ! 0.000 0.000 0.000 0.000 0.000
0.25 ' 0.000 0.000 0.000 0.250 0.250
0.50 ! 0.450 0.650 1.000 1.000 1.000
0.75 ! 1.000 1.000 1.000 1.000 1.000
1.00 I 1.000 1.000 1.000 1.000 1,000
1.50 I 1.000 1,000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000 1.000

RATIO OF REWARD TO HOLDING COST = 10.0

RUTL= 1,00 2.00 2,50 3.00 4.00
PTTL --------------------- ----------------------------

0.00 I 0,000 0.000 0.000 0.000 0.000
0.25 ! 0,000 0.000 0.000 0.000 0.000
0.50 1 0.450 0.700 0.750 0.750 0.800
0.75 ! 0.900 0.900 0.900 0.900 0.950
1.00 ! 1.000 1.000 1.000 1.000 1,000
1.50 ! 1.000 1.000 1.000 1.000 1.000
2.00 1 1.000 1.000 1.000 1.000 1.000

RATIO OF REWARD TO HOLDING COST = 50.0

RUTL= 1.00 2.00 2.50 3.00 4.00
PTTL= ---------------+--------------------------------

0.00 I 0.000 0.000 0.000 0.000 0.000
0.25 0.000 0.000 0.000 0.000 0.000
0.50 I 0.000 0.750 0.750 0.750 0.750
0.75 1 0.850 0.900 0.900 0.900 0.900
1.00 I 0.950 0.950 0.950 0,950 0.950
1.50 I 1.000 1.000 1.000 1.000 1.000
2.00 I 1.000 1.00 1.000 .000 1.000

RATIO OF REWARD TO HOLDING COST - INFINITE (i.e. Holdinm cost x 0)

RUTL= 1.00 2.00 2.50 3400 4*00
PTTL= -- -- - - - - - - - - -- - - - - - - - ---- ---- ---

0.00 I 0.000 0.000 0.000 0.000 0.000
0.25 I 0.000 0.000 0.000 0.000 0.000
0.50 P 0.700 0,750 0.750 0.750 0,750
0.75 ! 0.850 0.850 0.850 0.850 0.850
1.00 I 0.900 0.950 0.950 0.950 0.950
1.50 1.000 1.000 1.000 1.000 1.000
2.00 I 1.000 1.000 1.000 1.000 1.000

Figure 5.5: The optimal value of the critical trans-
ition probability PC calculated in the
two-work-area / no-machine Markov model

men
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CHAPTER 6

UTILITY IN AN ENVIRONMENT OF CERTAINTY

6.1 The Linear Utility Assumption

The assumption that subjects have a linear utility for
the rewards in the experimental paradigm used in this study
is basic to the contention that the models developed for
operator performance reflect optimal behavior. Sub-optimal
performance on the part of an experimental subject should
reflect some psychological barrier that is preventing the
operator from fully grasping the complexities of the task
environment. However, it may also be the case that the
reward function the operator is trying to maximize is not
the same one as the one the model maximizes. The subject
may be acting optimally based on his internal value system.

Suppose the human operator is found making decisions in
a multi-task environment that the model shows to be
suboptimal. One possible explanation for this
sub-optimality is that the human is incorrectly perceiving
the probabilities that tasks exist in other work areas.
Alternately, he might just be overcome with the choices
available to him. It is also possible that the human simply
does not value the rewards and costs presented in the game
at their face value; that is, the operator's "utility" for
points is not linearly related to the physical "magnitude"
of the points.

There are certain reasons for making the assumption of
linear utility. First, the point system used in these games
has no correlation to physical quantities, such as money.
Game rewards cannot be interpreted as real-world rewards and
it is therfore unlikely that humans will have any particular
preferences for different values. As a result, the utility
for points will be linearly related to the points
themselves.

I
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Secondly, the experimental situation is only a game.
In real life most people tend to be risk adverse in the
search for rewards. In a gaming situation where there score
can be compared to that of other subjects there is no reason
to be risk adverse. A bigger danger is that
over-competitive subjects will take risks to improve their
score and outperform other subjects.

Despite these arguments, the linear utility assumption
cannot be blindly accepted. Even with no physical meaning
to the scores humans may not act in a linear fashion.
Consider a simple experiment where two numbers are presented
to a subject and he is asked to determine if they are equal
or not. The response time for the pair 3-5 is less than for
the pair 7-9. Though the absolute difference is the same in
both cases, the "perceptual difference" apparently is not.
This result would violate the linear utility assumption.

6.2 Testing the Linear Utility Assumption

In order to test the hypothesis that linear utility was
an acceptable assumption an alternate game was considered.
This game was similar to SUPER in that an operator had to
deal with tasks by either doing them himself or by assigning
them to a costly machine aid. The game differed from SUPER
in that no new tasks appeared over the course of the
experiment and all tasks were visible at all times. By
having operator duties similar to those in SUPER but in a
very simple environment, and by removing the source of
uncertainty, any sub-optimal behavior could be attributed to
misconceptions about the value of rewards and costs.

The playing field for the game is shown in Figure 6.1.
The name of the game, BOXCLR, derives from the fact that the
operator was faced with a number of boxes, or tasks, that
had to be cleared from the screen. All tasks had the same
reward, R, for completion and the holding cost, h
[points/second], for being left unattended. The operator
could "do" a task himself by placing a cursor in the extreme
left column on the same row as the desired task and
depressing a "DO TASK" button on a control box.

The column was called a garage, and a little bulldozer
would leave the garage, move out to the task, turn around,
and then push the task/box back to the garage where both
would leave the playing field.

Alternately, the operator could place the cursor in a
garage/column towards the center of the screen, and press
the "ASSIGN MACHINE" button. This action would assign
another bulldozer leave this second garage and get the box.
This bulldozer represented a machine aid. A wage, w, had to
be paid for use of the machine aid [points/second].
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a

Machine Bulldozer
Leaving Garage

Task Box
Sx(i) 0 to be Cleared

f/

II

Human Machine
Bulldozer Bulldozer
Garage Garage

Figure 6.1(b): Diagram of the BOXCLR playing field
showing parameters x(i) and a used
in analysis
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This machine bulldozer completed tasks faster than the
human could. Though both bulldozers moved at the same
speed, the second one left from, and returned to a garage
that is closer to the box. The cheap bulldozer, in the
leftmost garage, correponded to the human operator doing the
task himself.

The operator had to be pressing either the DO TASK or
the ASSIGN MACHINE button in order for either bulldozer to
move. When neither button was depressed, all the action
stopped: the clock stopped, holding costs and machine wages
were not paid and neither bulldozer moved. This time out
allowed the operator to plan his future strategy without
worrying about the ticking clock. If the operator acted
sub-optimally it could not be attributed to rushed
decisions.

The operator's chief concern was to assign the
bulldozers to the various tasks based on the relative
rewards, holding costs and machine wages. Only one
bulldozer could leave each garage at any time. When all the
boxes had been cleared from the screen, then the experiment
was over.

6.3 Measuring Operator Performance

BOXCLR is a very straightforward game. The operator is
faced with N tasks which can each be dealt with in two ways:
by machine or by human. An operator strategy is determined
by which set of tasks he chooses to do by hand and which set
he assigns to a machine.

Given two tasks in the same set, an operator should do
the one closest to a garage first. The closer a task is to
a garage, the less time it will require before it is
completed. The order the operator chooses to do these two
tasks will not affect the total time for service, which will
equal the sum of the individual service times. However, the
order will affect the total net holding cost incurred for
both tasks. Both tasks will exist while the first one is
being dealt with. Only one task will exist over the service
time of the second task done. Total holding cost will
therefore be minimized by doing the shortest task first.

The value of the reward, R, obtained by completing each
task should have no effect on operator strategy. Regardless
of ordering, the operator will receive R points for each of
the N tasks. Only the cost variables, holding cost and
machine wage, will cause different strategies to yield
different scores.

Because each of the N tasks can be handled one of two
ways, by hand or by machine, there are 2**N possible
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strategies (assuming that of the tasks done by hand, the
shortest are done first, and that of the tasks done by
machine the shortest are again done first). The total cost
of a strategy is simply the sum of the cost for those tasks
done by hand, and those tasks done by machine. The total
cost of those tasks done by hand is equal to:

S2*Ix(i) + a)

HUMAN COST = * (M-i+l)*h
spd

where
x(i) : the position of task boxes done by hand

[see Figure 6.1(b)]

a : the difference in between the human garage
and the machine garage [see Figure 6.1(b)]

h : holding cost (units/time)

spd : the bulldozer speed (distance/time)

M : the number of tasks by hand

i : the index of hand-done tasks in order of
service time [i.e. x(i) < x(k) for i < k]
and i=l,M

This formula assumes the shortest task done by hand is
undertaken first. While it is being dealt with all other
hand-done tasks must wait and incur the holding cost. When
the ith task is being done all longer tasks must similarly
wait for service. The factor "2" arises from the fact that
bulldozers must first move to the box from the garage as
well as push the box back to the garage. The cost of all
tasks done by machine is based on a similar formula with the
machine wage included.

S2*x(j)

MACHINE COST . * (N-M-j+l)*h + w
spd

where
x(j) : the position of task boxes (see Fig. 6.1)

done by machine
I

w : the mahcine wage (cost units/time)

N : the number of tasks

N-M : the number of tasks by machine
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j the index of machine-done tasks in order of
service time [i.e. x(j) < x(k) for j < k]
and j=I,N-M

With these two formula it is possible to compute the
total cost of any possible operator strategy. The program
TCST, shown in Appendix B does just this. An additional
routine, HSTGRM, determines each of the 2**N possible
sequences, computes their cost using TCST, finds the optimal
strategy with the lowest total cost and generates a
histogram showing the number of strategies that yield
particular total costs. One such histogram is shown in
Figure 6.2. It is possible for there to be more than one
"optimal" strategy in a simple game like BOXCLR because two
or more divisions of tasks between man and machine can yeild
the same overall cost.

When an experimental subject attacks the game in BOXCLR
the cost of his strategy can be computed by seeing which
tasks he does by hand and which he does by machine aid.
Using TCST the cost of this strategy is computed and
compared to the output from HSTGRM. This process yields the
fraction of all possible strategies that would have been
better than the one actually used, and the cost of the
subject's strategy as a fraction of the minimum cost
possible.

The cost of operator strategy used for comparison with
the output of HSTGRM was not the actual cost incurred by the
operator when he applied his strategy. Human subjects tend
to waste time as they make small mistakes in applying their
chosen strategy. Because of implementation error, an
experimental subject applying the optimal strategy will
generate a sub-optimal score. As a result, a subject's
score is not directly comparable to the output from HSTGRM
which assumes that an operator can carry out a desired
strategy perfectly.

However, in BOXCLR the concern is whether or not a
subject can determine which is his best course of action,
not whether he can carry out his plans flawlessly. By
looking only at the subject's plans, and not his execution

of those plans, it is possible to see if he is indeed acting
close to optimal. If he is at least trying to attain the
optimal behavior described in TCST, which assumes a linear
utility for cost, then it can be concluded that the human
subject has linear utility for the point system used.

For each experiment, the subject's strategy was
recorded. Using TCST, the maximum potential score from
applying this specific strategy could be calculated.

I
I
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Two measures of operator performance were considered.
The first of these were the fraction of all possible
strategies for a particular experiment that were better than
the one employed by the operator.

The second measure takes into account the dispersion of
the histogram of all possible strategies. If many
strategies are very good the operator may have achieved
close to the minimum cost, but still have a large fraction
of strategies better than his. The second performance
measure is the operator's realized costs divided by the
minimum possible cost.

6.4 Experimentation

Three subjects each conducted 96 trials with B0XCLR.
The holding cost was fixed at one point per second while the
machine wage was either zero, one, two or four points per
second. In addition the number of boxes that needed to be
cleared changed from two to four to eight. The order of the
experiments was random.'

Table 6.1 and 6.2 shows average operator performance as
a function of the two experimental parameters.

M4achine Wage
(points/second)

0 1 2 4 Average

No. 2 .005 .047 .056 .099 .052
of 4 .030 .093 .045 .033 .050
Boxes 8 .037 .050 .038 .152 .069

jAverage .024 .063 .046 .095 .057

Table 6.1 Fraction of all strategies betterIthan the one used by subjects

Machine Wage
(points/second)

0 1 2 4 Average

o 4 1.008 1.042 1.030 1.039 1.030
o. 2 1.003 1.022 1.034 1.078 1.034

Boxes 8 1.020 1.026 1.031 1.091 1.042

Average 1.010 1.030 1.031 1.069 1.035

4Table 6.2 The ratio of operator Cost to minimum
cost for experimental subjects
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Tables 6.1 and 6.2 show that human subjects do tend to
be close to the optimal strategy. Because this optimal
strategy is based on the assumption of linear utility, then
a safe assumption would be that human subjects do have
linear utility for the points used in the game.

The similarities between BOXCLR and SUPER are numerous.
Based on these results the linear utility assumption used in
the analysis of SUPER is valid.

There is a slight decline in performance as, N, the
number of boxes increases. This is because complexity of
the task of choosing the best strategies grows with N. In
fact, the number of possible strategies is 2**N. The
implication of this is that subject performance drops with
complexity of the decision algorithm, though for simple
enough situations they act as if they do have linear
utility.

The decline in performance with increasing wage shown
in Tables 6.1 and 6.2 might imply that subjects don't have
perfect linear utility. This trend is due to the fact that
the problem seems more complex to subjects as wage
increases. The magnitude of the trend is heavily weighted
by the very poor showing of subjects for a wage of four
points per second with eight boxes.
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CHAPTER 7

THE OPTIMAL DECISION MODEL

7.1 Limitations of the Markov Model

The Markov model approach is easy to apply in the
simple case of no machine and two identical work areas where
only four states are needed to describe the system. When a
machine aid is added and the number of work areas increases
the number of distinct states required to describe the
system increases.

The simple model given in Chapter 5 has only four
states corresponding to: no tasks; one task in the current
work area; one task in the other work area; and two tasks.
If the tasks in the two work areas are no longer identical,
however, a complete description of the state of the system
requires information on which work area is occupied by the
operator. As a result, twice as many states are necessary
to characterize the system.

The problem becomes even more complex when the number
of work areas is greater than two. When there are only two
work areas it is easy to see that upon arrival in one work
area the operator is departing the other one. With more
work areas, arrivals in one work area say nothing about when
the operator was last in any other work area. This
information concerning the elapsed time since each work area
has last been examined is important to the operator because
the greater the elapsed time the greater the probability
that a task arrival has occured.

In order to completely and unambiguously describe the
state of the operator's environment, both the physical state
of the system (i.e. where tasks exists) and the operator's
information about that state must be considered. The
operator's actions will depend upon his information and the

I
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effects of these actions will depend on the physical state
of the system. Modeling the system must take both into
account.

Consider a case with R work areas. Each work area will
either have a task on it or it won't. Just representing the
possible combinations for task existence will require 2**R
states. Additionally, the state will also depend on the
location of the machine aids. There are R+l possible
locations for each machine corresponding to the R work areas
and to the condition that the machine is not assigned
anywhere.

The operator will similarly have R+l possible
locations. Specifying the locations of the operator will
require increasing the number of states by a factor of R+l.
The same increase will be necessary to specify the location
on each machine. The net increase in states will be
(R+1)**(M+1).

An optimal policy based on a Markov analysis would
generate a list of the best next move for each state.
However, such an analysis is useless if the -operator does
not know which state the system is in. Because the operator
can only look at one work area at a time, his information
about vaious work areas is outdated. The strategy chosen by
an operator will depend on his knowledge of the system.
However, the effects of this strategy will depend on the
actual state of the system. In modeling the system, both
the actual state of the system and the operator's knowledge
of that state must be represented.

If an operator has not visited a work area in a long
time he may assume a task has appeared in his absence and
act accordingly. En most cases his assumption will be
correct but in an optimal analysis the possibility that no
task has appeared must also be considered. For each level
of knowledge, every possible system state must be
considered.

The operator's state of knowledge of the system can be
summarized as the time elapsed since he last examined each
work area. An equivalent measure would be the probability
that tasks exist on various work areas. Both these measures
are continous and have an infinity of possible values. As
an approximation they might be considered in L discrete
levels. In this case, L**R states are needed to define the
operators knowledge of the system. To record whether tasks
existed would require 2**R states. The total number of
states therefore becomes
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R M+l R
Required states = 2 (R+1) L

R M+l

The following table lists the required number of states
as a function of the number of work areas (R) and the number
of discrete categories for elapsed time (L). The simple
case of no machine aids is considered here. Recall that for
an exact model, elapsed time since last look must be
continuous (i.e. L must be infinite).

L divisions in elapsed time
1 2 5 10 100

4
2 12 48 300 1200 1.2x10

4 5 9
4 80 1280 5x10 8x10 8x10

6 8 14
R 6 448 28672 7x10 4.5xi0 4.5xi0

5 8 11 19
8 2304 5.9xi0 9x10 2.3x10 2.3xiO

7 11 14 24
10 11264 1.2x10 l.lxlO l.lxlO l.lxlO

Table 7.1:- Required states for representing the R
work area, L time division, no machine
environment

The above table shows that it becomes impractical to
generate a model similar to that in Chapter 5 when R
increases and when the tasks are not identical because of
the high number of required states. Fortunately,
approximations can be made that make the problem more
tractable.

The Markov model approach generates an analytic
solution for the expected reward per unit of time of a given
strategy. This expected reward per time can be approximated
by employing the specific strategy in a multi-task situation
and recording the actual rewards and times. The longer the
time this simulation is employed, the closer the observed
reward per time (RPT) will approach the exact RPT. Figure
7.1 gives a sample time series showing RPT for a
two-work-area/no-machine game at various time intervals.IThe operator in the simulation is assumed to change work
areas whenever he finds himself in a work area not
containing a task to do. The exact RPT, as computed withI

I
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3.5

3.0

Reward/time
(points/second) - -/-.

2.5

2.0
1 2 4 8 16 32 64 128 256

Simulated time
(minutes)

Figure 7.1: The reward per time observed at various points
in a simulation of SUPER. The dotted line gives
the analytically calculated long run reward per time.
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the queuing theory model presented in Chapter 5, is also
shown.

7.2 The Simulation, or Monte Carlo, Approach

If the strategy is well defined, the computer can be
asked to play the part of an experimental subject. The
computer can implement the desired strategy far more
consistently than can a human. To speed computation the the
graphic display used by the human does not have to be drawn
for the computer. Similarly, the computer not need to play
the game in real time. By using the computer in a
stripped-down/speeded-up version of SUPER, a hundred seconds
of real time playing can be simulated in only seven seconds.

This simulation approach can be used to generate
estimates for the RPT of any strategy that can be "taught"
to the computer. Naturally, if a strategy requires
extensive computation in determining which course of action
to take at various points in time, the time spent on the
simulation will increase. The estimation technique whereby
a reward function for a probabilistic system is computed
through simulation is commonly called a Monte Carlo
approach.

The chief question raised in this simulation approach
is just exactly how long should the simulation be run before
the estimate is a sufficient representation of the actual
RPT. Figure 7.1 shows values of RPT that vary significantly
before converging.

In this analysis, the computer was asked to check its
estimate of RPT after each simulated 100 seconds. The
estimate was compared to the previous estimate obtained 100
seconds previously. If the absolute difference between the
two estimates was less than a critical fraction of the
latest value of RPT then the simulation ended and the
estimate of RPT was recorded. This critical fraction was
called the Simulation Confidence Factor, or SCF. The SCF is
a measure of the convergence of the simulation and of the
accuracy in the estimate of RPT.

Table 7.2 gives the time required to achieve various
levels of accuracy using this method. The actual time
required to run to longest of these simulations on the PDP
11/34 computer at the Man-Machine Systems Laboratory at
M.I.T. was about ten minutes.
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SCF Simulated Time (secs)

.1 200

.01 1000

.001 1400

.0001 8000

.00001 13400

Simulation stops when CHANGE IN RPT < SCF*RPT

Table 7.2: Time required to estimate RPT to
various levelsof accuracy

The accuracy results presented in Table 7.2 apply to
experimental subjects as well as computer simulations. The
accuracy in the estimation of RPT increase with the length
of simulation. To get comparable levels of accuracy for the
RPT of experimental subjects the length of experiments must
be on the same order as the simulated times in Table 7.2.
In order to have an accuracy to a level of one-in-a-thousand
will require a simulation of 8000 seconds. This corresponds
to just over two hours of continuous experimentation with
one particular subject and one particular set of parameters.

Alternate performance measures are of course possible
and will be discussed later. One such measure involves
comparing the actual decisions made by an operator to a set
of optimal decisions. The fraction of agreements would
provide a measure of subject performance relative to the
optimal.

7.3 Using a Decision Tree to Generate Optimal Stategies

In a situation where all task classes are identical,
where the machine wage is zero, and where the man and the
machine aid are interchangeable, a poosible canditate for
the optimal strategy is one where the operator always
switches to the work area where the probability of task
occurance is greatest. If a task exists he should assign
the machine to it. If the machine is unavailable, then he
should work on the task himself until the machine is free.
Using the simulation approach outlined above it is possible
to compute an estimate of the expected reward per time of
such a strategy. Other possible strategies can also be
tested and the best of this set discovered.

This hunt-and-trial method will only uncover an optimal
strategy if the optimal strategy is among the set
hypothesized. For simple situations, such as the one
mentioned above, it is not too difficult to guess which
strategies will be effective. However, for complex
scenarios with differing task parameters and multiple
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machine aids the options are not so clear cut.

Consider the general case of an operator and M machine
aids in an R task environment where the parameters of the
individual task classes differ according to service time,
arrival rate, rewards and costs, and where the productivity
of the machine aids varies by task class. The decision to
assign a machine to a particular task will depend on the
likelihood that other tasks exist elsewhere and on the
status of the other machines (i.e. is a more appropriate
machine that is presently occupied about to become free ?).
If the operator decides to change work areas, his
destination will be chosen on the basis of task rewards and
costs as well as the probability of task occurances in the
other work areas.

It is impossible to use the method shown in Chapter 5
because of the vast number of states that would be required
to specify the system. However, this problem does not mean
decision theory must be abandoned. Instead, a traditional
decision tree can be constructed which has a limited time
horizon. The Markovian approach determined the best
strategy taking all possible future events into
consideration using, in effect, an infinite planning
horizon. However, because events far in the future will
have only a minor impact on a decision in the present, the
infinite time horizon criterion can be discarded in order to
make the decision problem tractable.

At any point in time the operator must decide to follow
a course of action that is included in the following set:

1) He can do the task on hand by himself
2) He can assign a machine to do that task
3) He can transfer to another work area
4) He can do nothing (i.e. stay in the current

work area)

Options 3 and 4 are very similar because staying in one
work area and doing nothing is like transfering from that
work area to itself. The operator's choice boils down to
dealing with a task or moving to a work area. The
operator's options are shown graphically in Figure 7.2 as a
standard decision tree.

The decision to follow one of these options depends, in
the general case, on the following variables:

- the elapsed time since the operator last
looked at each work area, from which
he estimates the probability that a task
exists there

- the work area currently occupied by the
operator

I
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Do task manually

Assign Machine 1 to task

Assign Machine 2 to task

AgGign Machine M to task

Go to Work Area I

Go to Work Area 2

Go to Work Area R

Figure 7.2: Options for an operator at each node in a
decision tree, for a paradigm environment
with M machine aids and R work areas
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- the existence of tasks on the various work
areas, if known by the operator

- the time until each machine aid will be
available, assuming that it is currently
occupied

- the game parameters [service time, arrival
rate, holding cost, machine wage, and rewards].
If some tasks have been partially attended to,
the operator must also know the fraction of
the total service time that has elapsed.

These variables will completely describe the operator's
potential state of knowledge about the man-machine system
environment. When two situations arise having the same
values for the above variables then a consistent operator
will decide on the same course of action in both situations.

Each course of action shown in Figure 7.2 will commit
the operator for a certain length of time. The decision to
transfer to another work area will prevent the operator from
doing anything else over the transition time. Assigning the
machine, however, does not tie up the operator at all
because assignment is instantaneous and the operator can
immediately do something else.

The decision to work on a task by himself commits the
operator to the service time of the task only when he wishes
to complete the task. The operator can reevaluate his
decision at any time. He may start working on a task only
because the machine he wishes to assign is occupied
elsewhere knowing that when the machine is free he will
immediately reassign it to the task he is currently working
on. The machine will then continue where the operator left
off.

Similarly, the choice to remain in the current work
area, even if no task is present can always be reevaluated.
The operator may be just waiting for a task to appear. If a
task exists, he may be waiting for a machine aid to become
available.

So far, only the immediate consequences of the
operator's decisions have been considered. In deciding on a
particular course of action, the operator is limiting his
future choices. In the case of only one machine aid,
assigning the machine to a task ties up that machine for a
length of time, and usually commits the operator to changing
work areas. Once he has changed work areas he may discover
another task which must be dealt with manually.

.I
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Alternatively, only empty work areas may be found and the
operator will have to transfer again.

If the operator looks not only at his present decision,
but at the future ones that subsequently will have to be
made, he realizes that any decision in the present has far
reaching consequences.

Figure 7.3 shows the expanded decision tree faced by
the operator at for an operator looking three moves ahead.
Only two work areas and one machine were considered in
constructing this tree. The operator was assumed to start
in a work area that does not contain a task.

Each path in Figure 7.3 over the planning horizon goes
through three decision nodes where the operator must decide
which branch to take. Additionally, all decisions to change
work areas involve a chance node, which corresponds to the
possibility that tasks may or may not exist in work areas
that the operator transfers to.

Each branch, or path, through the decision tree
describes a possible scenario that corresponds to a set of
sequential operator decisions and specific outcomes at
chance nodes. Each given path, if executed, would generate
a net reward for the operator over a specific time. Because
the system is probabilistic this time and reward cannot be
calculated deterministically. However, an expected reward
and an expected execution time for each path can be
computed. Assuming that a reasonable operator will attempt
to maximize his expected reward per unit time then the best
decision immediately available to the operator can be
chosen.

The results from a decision tree which looks three
steps ahead will be optimal if the experiment actually ends
three steps into the future. No events further into the
future are considered. If, however, the experiment will be
continuing for an indeterminate time, then there is no
quarantee that some important event will not occur just
beyond the three-step horizon. Such an event, if considered
in the analysis, might cause an operator to change his
"best" strategy.

To include more and more possible events in the
analysis, the decision tree can be extended more and more
steps into the future. In the limit, as the number of steps
becomes infinite, the decision tree will incorporate all
possible future developments and the best decision will
always be the same as the corresponding optimal Markov model
outlined in Chapter 5.

Unfortunately, an infinite decision tree will have an
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I
Decision Node
WI: go to/stay in Work Area 1 W2
W2: go to/stay in Work Area 2DT
DT: do task manually Wl
AI: assign machine W W2

O Chance Node WW1 2
TE: task exists T DT
NT: no task AM

NT W1
W2

ME AM Wl
W2
Wi
W2

NT TE W2

W1 AM DT

NT W1
W2

W1 W2
DT
W2

NT W1
W2

TE W DT

W1
W2 W1 NW1 W2

W2
W2 A DT

Wi
W2

TE W,

W2

NT T DTWI

W1 W1

W2
W! W2

TE 1 W

W2 . DT

NT W1
W2

Figure 7.3: The 3-step decision tree for an operator
faced with two work areas and having one
machine aid. The operator is assumed to
start in Work Area 1 where no task exists.
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infinite number of branches and the computation of expected
reward per time will be impossible. However, as the number
of steps gets large, the incremental benefit of looking one
more level will decrease. It is possible to find a level of
search that is sufficiently small to allow for computation
of the "best path", but sufficiently long to approximate the
infinite tree.

The procedure described above will not generate the
true optimal strategy for the multi-task environments
depicted in SUPER because only a limited time horizon is
considered. However, it will discover the "best" strategy
to apply over that limited time horizon. For the remainder
of this chapter, these best strategies will be referred to
as "N-step optimal", or "optimal" for brevity.

7.4 Extensions to the N-Step Model

While the N-step model described above can generate the
expected reward per unit time of any contemplated action for
any level of planning, it may not determine unambiguously
the best choice. There will be cases when two actions are
equally attractive in terms of reward per time. Some
additional citeria must be considered in these cases.

Suppose that in looking only one step ahead, it does
not matter whether or not a given task is done manually or
automatically: both generate the same expected RPT. A
heuristic tie-breaker that could be used in simulations
would be to use the machine in such a situation. Such a
decision would be rationalized by realizing that a human
operator would want to keep himself free in order to explore
other work areas, or work on another task while the machine
is busy.

of course, these considerations imply that the decision
system is looking beyond the the single step of the model.
However, the system cannot be said to be looking a full two
steps ahead because it does not specifically say what the
operator will do after assigning the machine; rather it
deals only with the general possibility that something else
might be done.

A hierarchy of operator actions must be prepared for
the cases when computed rewards per time are equal. This
hierarchy should be a defendable representation of human
priorities because the decision process is supposed to model
the human operator. For the purposes of this analysis, the
operator will first assign his machine aid if available.
His second choice will be to do a task manually. Only if
these options are unavailable will he change work areas.
This hierarchy only applies when two actions cannot be
differentiated on the basis of reward per time. The model
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will require the simulated operator to change work areas
when a task exists only if the reward per time for moving is
greater than the reward per time for doing the task.

A difficult problem arises when the model must choose
between moving to one of two work areas which have the same
RPT over the given planning horizon. A reaonable decision
is to transfer to the work area where the probability that a
task exists is greatest; that is, all other things being
equal, the operator will go to the work area where he feels
he will have the greatest chance of actually doing a task.

These heuristic tie-breakers will have a major effect
on the model performance when the models are looking only a
few steps into the future. The biggest effect will occur in
the one-step model. In the one-step model the expected
reward of the decision to change work areas does not depend
on the operator's chosen destination. Because the model
does not look any futher into the future than the time to
arrival in the new work area, the expected reward is equal
to the sum of the expected holding costs for all work areas
over the transition time. This total does not depend on
where the operator started his transition or on where t~it
transition will end.

For the one-step model, the decision to change work
areas is entirely governed by the heuristic to go to the
work are with the highest probability of task existence.
The model is essentially reduced to a simple application of
heuristics rather than an optimal analysis. This effect,
however, is only significant for models which look a very
small number of steps into the future. Even for the
two-step model, the number of occasions where two decision
options generate the same RPT is greatly reduced.
Performance is much more depentent on the 2-step algorithm
than on the heuristics.

7.5 Pruning the Decision Tree

The number of distinct branches in the decision tree
faced by an operator in a multi-task environment depends on
how far the operator is looking into the future and on the
number of options open to him at each step. If there are R
work areas and MI machine aids, then there are R+M+l
decisions to be made at each decision node (see Figure 7.2);
the operator must decide whether to assign one of the M
machines, do the task manually, or go to one of the R work
areas. The decision to go to a work area branches into two
paths corresponding to the chance that either a task will be
found or one won't be. At the final decision node, however,
the operator does not consider this chance branching. For a
R work area system, and an operator looking N levels deep,
the number of distinct branched in the decision tree is
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Decision tree branches = (N-I)(2R+M+l) + (R+M+I)
= N(M+l) + R(2N-l)

An example of the proliferation in branches is
presented in Table 7.3 for the case of one machine aid in an
R work area environment.

R= 2 4 6 8

1 4 6 8 10
2 10 16 22 28
3 16 26 36 46

N =4 22 36 50 64
5 28 46 64 82
6 34 56 78 100
7 40 66 92 118

Table 7.3: The number of branches in the decision
tree looking at R work areas N steps
into the future

The number of branches grows linearly with R, the
number of work areas involved. A sophisticated subject
might be able to prune the tree by saying that, based on
experience, he is extremely unlikely to go to certain work
areas in his next planning horizon. He can prune the
decision tree by only considering those work areas thet he
has a reasonable likelihood of going to.

Such a pruning technique could be applied to the N-step
model by having the model look only at work areas that meet
certain criteria. The cut-off criterion might include only
work areas that have the probability of task occurance above
a minimum value, or where the expected reward (probability
times reward minus holding cost) exceeded some minimum.

Using a simple-minded criterion to remove possible
options is not a sensible way of pruning the decision tree
in a supposedly optimal model. The simple criterion might
remove options that the optimal model would choose. A more
sensible approach is to limit the options actually available
to an operator in the environment being modeled.

One approach used in this study was to limit the
operator to one machine aid. This reduces the number of
branches to 2N+(2N-I)R for the N-step model. Another option
involves forcing the operator to follow a given search
pattern. The options available to the operator are reduced
to doing tasks either manually or by machine, staying in the
current work area or moving to the next work area in the
search pattern.
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By forcing the search pattern, the decision tree
reduces to a two work area analysis (the current work area,
and the next in the list). The number of branches in the
decision tree is therefore N(M+5)-2. Limiting the search
pattern and increasing the number of machine aids is a
sensible approach because this study focuses on the decision
to assign machines rather than human ability to generate
good search strategies.
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CHAPTER 8

MODEL VALIDATION

The N-step decision model is not truly optimal because
it has a limited time horizon. The statement was made
however, that given a sufficiently large time horizon, the
model output would approach the optimal. Before the model
can be used as a baseline against which to measure subject
performance some effort should be taken to validate the
accuracy of this assumption.

8.1 Comparison to the Markov Model

For various situations, optimal performance can be
calculated. The Markov model presented in Chapter 5 optimal
policies for the case of two work areas and no machine aid.
Table 8.1 gives the calculated reward per time for decision
trees looking from 1 to 7 steps deep (for a Simulation
Confidence Factor of one in a thousand - SCF=.001) as a
fraction of the optimal RPT from the Markov model.

N = 1 2 3 4 5 6 7

RPT(model)
- .98 .95 .96 1.03 .97 1.02 .99

RPT(optimal)

Table 8.1: Average ratio of RPT for N-step
decision models to Markov optimal
RPT

All the values of reward per time are close to the
optimal value because of the simplicity of the task
environment considered. With only two work areas and no

mink
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machines even low N decision trees perform well. The reason
some of the model RPT's exceed the optimal values is do to
the variance inherent in the simulation method.

8.2 Comparing Various Levels of the N-step Search

Given that situations where optimal, or close to
optimal policies can be determined, the results of the
specific N-step model can be compared to the optimal
policies for other values of N. The comparison can take two
forms, similar in manner to the way operator performance is
computed. The first method of comparison is simply to
simulate SUPER using the various trial policies and
comparing the total scores. A second method involves
comparing specific decisions to the various strategies in
various typical situations. The number of aggreements
between two models would be a measure of their similarity.
Seperate tallies could be maintained to compare models
according the the particular type of decision Ceg.
switching between work areas, assigning machines or deciding
to do a task manually].

8.2.1 Comparision by Reward per Time

The validity of a model can be determined through
simulation. Over a sufficiently long simulation period the
obtained reward per time will approach the long run reward
per time of a given strategy. Two policies with similar
rewards are similar in effect. Naturally, if a low N model
can be found with the same effectiveness as a high N model,
it is preferred because of the long computation time
required to run simulations with high N models.

A typical series of observed RPT's for models looking
up to seven steps deep is presented in Table 8.2. These
results are based on 300 second simulation of a
four-work-area/two-machine environment.

Depth of Search Reward/Time

1 3.266
2 3.173
3 3.063
4 3.063
5 3.307

6 3.534
7 3.534

Table 8.2 Typical reward per unit time
as a function of the depth in
an N-step search
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The general trend shown in Table 8.2 for RPT as a
funtion of N is typical of other experimental situations.
Reward per time tends to be relatively high for a one and
two step search. This is because the heuristics used in the
model to decide between two strategies having equal values
are effective if not optimal. When three levels of search
are considered these heuristics have only a minor impact.
Score falls because a 3-step search without heuristics is
not very efficient. As N continues to increase though, RPT
begins to approach the maximum potential value which would
result from an infinite planning horizon.

Occasionally, RPT does not continue to increase with
increasing N. In these cases a shorter search strategy just
happens to fit the parameters in such a way as to generate
very good decisions. When this situation arose, the best
policy and not the deepest search was used as the baseline
for performance measures.

8.2.2 Comparison by Decision Type

The various levels on N-step models can be compared to
each other by looking at the fraction of decisions on which
the two models agree. Everytime a subject makes a decision
in actual experimentation, the state of the system and the
state of the operator's knowledge were recorded. This
information was used to set up situations in which the
N-step models could be compared to one another. Situations
from actual experimentation were used because the models
would ultimately be used to compute performance for actual
experimental subjects.

Table 8.3 shows the number of times a model looking M
steps deep agreed with a model looking N steps deep for 253
experimental situations. Table 8.4 looks at the subset of
these decisions where a machine was assigned.

M-step Model
1 2 3 4 5 6 7

1 253
2 200 253
3 159 205 253

N-step 4 146 187 233 253
Mode 5 140 173 215 212 253

6 113 142 186 181 215 253
7 118 144 181 165 203 223 253

Table 8.3: The number of times a M-step
model agreed with a N-step model
when all decisions are considered
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M-step Model
2 3 4 5 6 7

1 106
2 104 149
3 103 146 190

N-step 4 102 144 187 203
Model 5 82 120 162 170 203

6 56 92 132 140 159 172
7 55 88 126 130 137 154 173

Table 8.4: The number of times a M-step
model agreed with a N-step model
when only decisions to assign
machine aids are considered

The diagonal of Table 8.4 is the number of times each
M-step model assigned a machine. Of the 253 trials
considered, the 4-step model assigned a machine 203 times.

For both the above tables, the M-step model best agrees
with N-step models where N is close to M. As N differs more
and more from M, the fraction of agreements between the two
models decreases. When two models have a high fraction of
agreement operator performance measured against one will be
approximately the same as if the other had been used as a
baseline.

The advantages to using the lowest value of N in
computing performance lie in the time required to analyse
operator strategy. In general, a six-step model was used
for most of the analyses of subject performance in this
study.
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CHAPTER 9

ANALYSIS OF HUMAN BEHAVIOR

9.1 Measures of Human Performance

A human subject makes a sequence of decisions over the
course of a single experiment with SUPER. These decisions
interact with the particular parameters of the paradigm to
yield his score. This score is just a number which reflects
the rewards, costs and length of the simulation. It cannot
say just how "good" the operator performed unless it is
compared to some baseline score for the particular scenario.
The "N-step" policy model described in Chapter 7 provides
that baseline for performance.

The simplest way to measure the operator against the
model is to divide the operator's score by the simulation
time and compare the result to the reward per unit time
(RPT) generated by the optimal model. However, this
straightforward comparison could show that the operator's
performance exceeds that of the model. The model RPT would
be based on a simulation lasting for the equivalent of a few
hours real time. Unless the human subject ran for an equal
length of time the exact magnitude of his score will depend
heavily on the random nature of the task environment. if
the human is "lucky" and many tasks arrive over his
simulation, then his score will be higher than otherwise.
The performance measure chosen should minimize the impact of
the variance in RPT resulting from the probabilistic nature
of the system.

The problem of variance can be mitigated somewhat by
realizing that the random number generator used by the
computer in generating chance elements of the SUPER paradigmIis not really random. Using the same "seed" on two
different occasions will result in the same sequence of
random numbers. The same seed used in two separate

lo
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experiments will result in the same task arrivals on the
same work areas, assuming that a work area is not occupied
by a task that has been left unattended when the new task
arrival is indicated.

An N-step model can be used to simulate a particular
operator over a particular experiment by using the same
random number generator seeds. The maximum potential score
for both the operator and the model will be identical.
However one or the other may miss certain opportunities by
leaving a task unattended thereby preventing additional
tasks from arriving in that work area.

Even with the same random seed, the score generated by
the human subject might still exceed that of the optimal
policy. If the cards fall right, the human may always find
himself in work areas just as tasks appear. The optimal
strategy will, by definition, be the best possible strategy
in the long run. It is always possible, though, for the
long-run optimal strategy to be significantly sub-optimal in
a variety of short term situations.

A third possible measurement of performance involves
looking at individual decisions made by the experimental
subject. The game conditions at the time of these decisions
are made can be recorded. The best-choice decision based on
an optimal N-step strategy can be computed for these
conditions. The fraction of human decisions that agree with
the computed best strategies is the third measure of
operator performance.

This performance measure is based on what an optimal
operator would do when faced by the exact decision
environment actually faced by human subjects. The measure
differs from the previous two in that both the actual
performance and the baseline it is compared to are computed
for identical conditions.

An additional advantage of this performance measure is
that it exposes which types of decisions are leading to
human sup-optimality. The fraction of operator decisions
that agree with the optimal model can be computed by
decision type. The number of times a subject used a given
machine when the optimal model did not, and the number of
times the human did not when the model did, are readily
computable quantities that provide specific information not
available in gross performance measures.

Breaking down performance by decision type also allows
this study to focus specifically on the way human subjects
assign machines, as opposed to the effectiveness of the
search strategies they employ in moving from work area to
work area.
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The N-step model is actually a series of models each of
which looks one additional decision step into the future. A
comparison of human to model performance performance can be
generated for different levels of N in the N-step model.
There will be certain levels of N that yield the highest
correlation with human performance. This exercise gives an
indication of the level of forecasting used by the human
operator.

9.2 Some Reasons for Operator Sub-optimality

If subject performance does not match the model output,
then the human operator can be called sub-optimal. However
there are many possible explanations for this
sub-optimality, only some of which support the hypothesis
that the human is being inefficient in the allocation of his
resources.

9.2.1 Non-Linear Utility

one such possibility is that the subject's utility for
points he earns in an experiment is not linear. A subject's
responses might be optimal in terms of his internal
utilities while appearing sub-optimal when compared with
results based on a model which assumes linearity. The
hypothesis that subjects have non-linear utility maps was
the subject of 'Chapter 6. The conclusion was that linear
utility 'holds reasonably well.

Utility deals with the internal value subjects place on
the objectives in the experimental paridigm. There are
other areas in the paradigm where the difference between the
actual game and the subject's internal representation of it
might lead to sub-optimal behavior.

Consider the situation in SUPER. The human operator
must search the work space for tasks requiring attention.
Both the search strategy and the method chosen for dealing
with tasks depend on the various parameters involved.

9.2.2 The Operator's Internal Representation of Task
Parameters

Technically, the operator's decisions do not depend
directly on the task parameters. Instead those decisions
depend on the subjects internal representation of those
parameters. Suppose the subject knows nothing about the
tasks he is to face. His best course of action will be to
assume that all tasks are identical. The operator will act
optimally according to the information he has available,
though his behavior will appear sub-optimal to an observer
who knows the correct task parameters.
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In the above example the subject was assumed, for
whatever reason, to have no knowledge of the system in which
he must operate. In the experimental situation, the subject
was presented with all the relevent information about the
paradigm beforehand. He also developed a sense of the
parameters as he was exposed to them over the course-.of the
experiment. His actions depended on both the decision
strategy used and his perceptions of the parameters.

In general, a subject will accurately encode only some
fraction of the information presented him. Some information
he will forget, and some information he will make up to take
the place of forgotten information. The information link
between the real world and the subject's decision processor
is not transparent.

Figure 9.1 graphically presents this process. The
subject is presented with the task parameters and encodes
then into his internal representation. The fact that this
process is not perfect is represented by the misalignment of
the box signifying his internal representation (IR) and the
box for task parameters (TP).

The encoding of task parameters is an ongoing process.
When a person is involved in such a multi-task environment,
his opinions vary with his experience. If one particular
task class seems to be cropping up often, then the operator
might adjust his concept of the arrival rate for that task.
Similarly, if the subject is getting no feedback concerning
his performance, his internal representation of the
distinction between the various rewards and costs of
differing tasks will be eroded. The agreement between the
actual task parameters and the subject's internal
representation is not static; it will shift and wobble
depending on his memory and his experience. At any point in
time, however, he will have some concept of all the
parameters that are influencing his decisions.

Based on his internal representation of the working
environment, an operator will determine a course of action
which may not agree with the optimal model. Figure 9.1
presents two hypotheses for this sub-optimally. First, the
mental computations performed by the operator may be such
that he does not choose the best actions. Second, if the
subject's computation algorithm is optimal, sub-optimal
performance can result from an internal representation that
does not agree with the actual task parameters. These two
hypotheses are not exclusive. The subject may be
imperfectly encoding information and then processing that
information sub-optimally.

The optimal model bases its calculations on the actual
task parameters. The human operator bases his computations
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on his internal representation of those parameters. To the
extent that the internal representation does not agree with
the task parameters, model and human behavior will differ.

If the operator is indeed making satisfactory decisions
based on his concept of the world, then the system designer
must focus on improving the operator's internal
representation in order to achieve desired performance.
However, if it is the operator's thought process that is
leading to inefficiencies, there may be nothing that can be
done to improve performance.

This report is concerned with deficiencies in the
decision algorithm used by human operators rather than with
problems they have encoding information. To reduce the
discrepency between the internal representation and the
actual parameters for experimental purposes, two strategies
were used.

The first strategy involved directly aiding the subject
in encoding information by placing the task parameters in
the context of a story, or scenario. one such scenario
involved thinking of the various task classes in terms of
using a calculator. One task class was labelled
"Additions". Tasks in this class had low rewards, high
arrival rates, and took about the same time for the operator
to do as it did his machine aid (i.e. his calculator). A
second class was labelled "Exponentiation". Exponentiation
tasks were much rarer than Additions (i.e. they had a lower
arrival rate) and there was a significant advantage to
assigning the calculator/machine-aid to them instead of
dealing with them by hand.

It was felt that by presenting each task class in terms
of a coherent story the operator would be able to compare
the parameters between tasks by simply thinking of their
names. Results with this strategy were promising in that
subjects were able to recall task parameters better than
when no story was presented. However, this improvement may
have been due to the fact that subjects spent more time
studying the task parameters when the story was presented
than they did otherwise. That is, the exercise itself of
learning the story provided more of a benefit than the use
of the names as memory aids.

A second method of reducing the difference between
internal representation and actual task parameters was to
display a summary sheet listing all the task parameters on
the Negatek display beside the playing field. If the
subject needed any information he could consult this summary
instead of relying on his memory. operators also found the
summary sheet useful in comparing two or more distinct task
classes.
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9.2.3 The Mental Computation Stage

The subject's decisions may be said to result from some
mental computations performed on his internal representation
of task parameters. There is a pre-processor in this mental
computation stage that is not specifically part of the
decision algorithm. This pre-processor places subjective
values on the various parameters found in his internal
representation.

Utility for costs and rewards, which has been dicsussed
at length elsewhere, is one example of this preprocessing.
The subject's internal model may be an accurate
representation of the task parameters but he may values
these parameters differently than does the optimal model.

The results in Chapter 6 indicate that the utility for
points in SUPER in appear linear, as was assumed in the
N-step model. However, there are similar judgements
concerning how the subject perceives the probability that
tasks exists on other work areas. All the subject has is an
idea of how much time has elapsed since he last visited
those work areas, which he somehow converts into the
probabilities used in his decision algorithm.

There is no way to separate the effects of the
pre-processing of the internal representation from
sub-optimalities resulting from the subject's decision
process. Whatever the source, these sub-optimalities are
the direct result of the human mental process and are
important to this study.

Task Parameters

Internal Representation

pre-proces 
sor

Utility for Parameters

decision algorithm

Action

Figure 9.2 :-Movement from task parameters
to operator action
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9.2.4 operator Reaction Time

An additional reason that an operator might not agree
with an optimal model even if his mental computations
followed the same optimal algorithm is that the human
requires a finite reaction time to reapond to stimuli. The
N-step model described above assumes that upon arrival in a
work area, the operator instantaneously perceives the
situation and makes a new decision. The elapsed time spent
in work area can be zero in the model. A human does not
respond in this way.

The average time between a subject's arrival in a work
area and the time when he takes some action, such as
assigning a machine or leaving the work area, is .48 seconds
(based on 3000 decision trials for four different subjects).
This value will vary by subject because some operators are
naturally quicker or are more willing to make a hasty
decision that they might later decide was inappropriate. A
particular subject will vary his reaction time between
experiments depending on the number of decision options open
to him and on the complexity of his mental algorithm.

It is possible to measure a subject's reaction time and
incorporate it into the N-step model. A self-aware subject
will realize that he requires .5 seconds to make decisions.
This reaction time can be added to the expected time
computations for the N-step decision tree. When a subject's
performance was calculated, the baseline model included the
subject's observed reaction time. If this were not done
then the subject and the optimal model would be dealing with
slightly different situations and sub-optimality could be
attributed to this difference.

9.3 The Experimental Situation

This study focused on sub-optimalities in operator
performance originating in the operator's mental
computations rather than in the other areas mentioned above.
The script for each experiment run reflects this concern.

9.3.1 The Task Familiarization Phase

Each experiment was preceded bl a Task Familiarization
Phase. Here the subject was exposed to each of the task
classes that he would face in the subsequent experiment.
Each work area was displayed individually on the MIegatek
screen (see Figure 9.3). Tasks assosciated with that work
area were allowed to appear at their given arrival rate.
The operator's options included assigning machines or doing
task manually; he was not allowed to change work areas. A
score based solely on the operator's performance in the
single work area was displayed.
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By forcing the operator to stay in one work area, it
was hoped that he would familiarize himself with the
parameters associated with that work area. In the actual
experiment a subject could jump from work area to work area
and cannot readily acquire a feel for the interarrival times
and machine service times involved. Because the displayed
score in the Task Familiarization Phase was for training
purposes and was not recorded anywhere, the operator could,
in an unpressured environment, see how various methods of
dealing with that task class affected his score.

A summary of the task class parameters was displayed on
the Negatek thoughout this stage for reference purposes.
When the operator felt he had absorbed the information for
one work area, he could then look at another one. At any
point the operator could return to any work area for a
"rfese course" in those task parameters.

The purpose of the Task Familiarization Phase was to
help the operator accurately encode, and develop a feel for,
the task parameters. If there was a "story" that went along
with a particular experiment, it was explained at this
point. When the operator felt he has encoded all the
information he could start actually playing SUPER.

9.3.2 Warm-Up Phase

In the Task Familiarization Phase, the operator only
looked at one work area at a time. The only options he
could test were the use of different machines on specific
tasks. He could not examine his entire strategy which
included switching between many work areas.

As a precursor to the actual experiment, each subject
was allowed a warm-up period of about two minutes in which
his score was displayed to provide him with feedback. The
Warm-Up phase also served to remove subject start-up
(learning curve) effects.

Additionally, when a run with SUPER was started all
work areas were empty and the operator knew this. There was
never be another situation in the same experiment when the
operator knew all work areas were clear. This start-up
condition was an anomoly and should not be counted in

* experimental results. The Warm-Up Phase allowed SUPER time
to reach typical conditions.

9.3.3 The Experimental Phase

The Experimental Phase began when the Warm-Up Phase
ended, without reinitializing SUPER. The operatoL was
signallel that the experiment had started and his actions
were being recorded both because of the time (he knew the
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length of the Warm-up Phase) and because his score was no
longer displayed.

The score was suppressed because it could provide the
operator with information that would normally be
unavailable. If the operator was in an empty work area and
suddenly saw the score begin to fall then he could assume
that a task had appeared on another work area and was then
exacting a holding cost. Similarly, the rate at which score
decreases indicated the number of tasks available. This
information could be of use the the operator, but is
unrealistic to provide him with it.

Everything which occured in SUPER over the course of an
experiment was recorded in a data file. All task arrivals,
task departures and operator actions, and the times these
events occur were stored. This information could be
accessed later in order to reconstruct the state of the
system and the potential state of the operator's knowledge
at each decision point. This reconstruction of the
operator's decision environmnet was used in the N-step
optimal models to calculate performance.

9.3.4 The Debriefing Phase

After each experiment the subject was debriefed. The
debriefing, while generally unstructured, progressed
according to the following outline.

First the operator was asked to recall all the task
parameters from the recently completed exoeriment. No
prodding was given for this initial pass. Values that the
subject was uncertain about were then explored by asking the
subject iWnat he would have done in situations where those
parameters should have been important. This questioning
helped subjects recall those parameters.

T'he second stage of the debriefing asked the subject to
define the strategy he used in the experiment. Questions
were asked until the strategy was well-defined enough for
the experimenter to be able to determine what the operator
would do in any situation.

The operator was also asked to comment on how well he
felt he had followed his stated strategy. Experiments where
the subject found a good strategy, but did not begin to
apply it until the end of the run, were repeated.

Finally, the subject was asked to resolve differences
between 'his stated strategy and the values of the parameters
he recalled. Miany times the operator could not recall any
difference between two work areas in the initial phase of
the debriefing but would have a strategy that clearly
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preferred one over the other. Often by considering his
strategy, the operator could improve the accuracy of his
parameter recall.

The purpose of the debriefing stage was to generate a
picture of the subject's internal representation of the task
parameters. The recalled parameters may not necessarily
agree with the subject's actual internal representation but
they do give an indication of weaknesses in the internal
representation.

Suppose there are many errors in a subject's recall.
This would indicate that the subject's internal
representation of those task parameters is also in error.
Uncertai.nty about the difference in a particular parameter
between task classes implies that that parameter did not
factor into the subject's decision algorithm. Similarly,
parameters that the subject accessed often would be better
remembered. Not surprizingly, inexperienced subjects, who
used the simplest decision algorithms, were also the ones
who exhibited the greatest uncertainty in recalling task
parameters.

The Debriefing Phase provided feedback to the
experiment designers who were trying to generate an
experimental situation that facilitated the subject's
ability to encode task parameters. Through the Task
Familiarization Phase and by displaying task parameters,
subject recall could be close to perfect. This implies that
any subject sub-optimality could be attributed to the
subject's mental decision algorithm rather than to his
ability to encode task parameters.
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CHAPTER 10

EXPERIMENTAL DESIGN

10.1 choosing Task Parameters

The various phases in the experimental situation, from
task familiarization to subject debriefing, were described
in Chapter 9. What has yet to be discussed is the choice of
task parameters and machine productivities that were used in
the experiments.

Prior to the period when specific hypotheses concerning
man-machine interaction were tested using SUPER an extensive
series of training trails were conducted. These trials
served the double purpose of training subjects in order to
minimize learning curve effects in actual experiments, and
exposing the experimenters to any potential difficulties
that they might have to deal with in running those
experiments.

A key conclusion from this training period was that
subject performance depended on the speed at which events
occured. Each experiment has a characteristic time
interval, which will depend on the average interarrival
times of task and their service times. if this
characteristic time interval is scaled proportionally the
strategy determined by an optimal model will not change.

An example of such a proportional scaling would be the
doubling of all parameters that vary with time. These
parameters are the arrival rates, service rates and holding
costs, all of which are defined in terms of events or costs
per unit time. This doubling of the parameters exactly
doubles the long run reward per unit time generated by the
N-step model.
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When human subjects were faced with a similar doubling
of parameters, they were unable to double their reward per
unit time. Human beings can be modeled to a first
approximation as single channel information processors.
That is, they can only be doing one higher order mental
process at any instant. Subject were required to perform
two distinct tasks in SUPER.

First, subjects had to gleam information from the
Niegatek display. Everytime they change work areas they had
to see if a task existed there, and if so whether a machine
was assigned there. They should also watch for task
arrivals and task completions on the displayed work area.
Second, the subjects had to make decisions about when to
change work areas and how to deal with discovered tasks.
Subjects could be assumed to be allocate their mental
processor hetween the competing demands of display scanning
and decision making.

When the characteristic time interval in SUPER is
shortened the rate at which significant events occur
increases. M4ore tasks arrive and the time required to
complete those tasks decreases. Subjects need to spend more
time scanning the display to keep up with the changing
events. Less time is available for decision making.

When the time available for decision making begins to
impinge on the time required for subjects to implement their
decision algorithm performance suffers. Subject will be
forced to use a simpler algortihm, one that varies less with
changing circumstances.

Increasing the characteristic time interval should1 produce the complementary effect of improving performance.
The rate of improvement will eventually fall to zero as the

* time available for decision making excedes the time required
for subjects' most complicated algorithm. After this point,
any additional time will not imporve the subjects' strategy.
It was hoped that all the experiments run in this study
would have characteristic time intervals that allow the

operaters to use their best algorithms.

10.1.1 Determining Satisfactory Characteristic Time

Interval

A simple way of testing whether a particular experiment
had a sufficiently large characteristic time was to double
it and then repeat the experiment. if a subject's
performance did not improve in this second round then it

* could be assumed that the original time interval did not
force the subject to make any quick decisions.
Unfortunately, applying this test everywhere would have
tripled the time required to run experiments since each

.........
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test, with the longer time interval, would have taken twice
as long as the original experiment.

An additional result from the trial phase of SUPER was
that subjects could tell, subjectively, whether or not they
were "comfortable" with a given set of task parameters. if
subjects always felt comfortable when the time interval was
long and rushed when it was too short, the comfort criterion
could be used to determine satisfactory parameter choices.

Three scenarios, involving one machine aid and two-,
four- and eight-work areas, with unamimous subject
aggreement on comfort were found. These versions were
defined as "1normal". Additional versions with
characteristic times double the normal and half of normal
were also created. These parameter sets were termed "slow"
and "fast" respectively.

Three subjects were each brought into the laboratory
for three separate sessions. In each session three
experiments were conducted covering each of the three
scenarios and each of the three speeds. order was varied
from subject to subject to soften learning curve effects.
Table 10.1 lists the average actual performance, measured as
the fraction of decisions that agreed with the optimal
model, for all three subjects over the different versions of
each scenario.

Version

Scenario Fast Normal Slow

2 work areas .75 .82 .72
4 work areas .60 .62 .48
8 work areas .76 .91 .56

Average .70 .78 .59

Table 10.1 Average performance relative to an

optimal model for three subjects

Compared to the "normal" scenarios, performance was
significantly worse for the "fast" scenarios where the
characteristic time was shortened. It is interesting that
"slow" performance was actually worse than "normal". This
decline is most attributed to the excess time subjects 'had
after they had scanned the screen and made decisions.
Because they had nothing to do they got bored and
disinterested. This boredom was comfirmed by subject
comments in the debriefing phase of experiments. Also,
because of the long periods of inactivity subjects forgot
what work areas they had resently visited and their search



79

algorithm suffered.

The absolute difference from scenario to scenario is
due to the different task environments. In the eight-work
area scenarios all tasks were identical. Search strategy
therefore only vary with elapsed time since a given work
area was last visited and not according to rewards and
costs. Because it is easier to deal with, performance was
better than in the two- and four-work area scenarios where
task classes differed and the operators were faced with a
more complex environment.

Performance is better in the two-work area scenario

than in the four because two-work areas are less complicated
than four. In the former the destination for a transition
is established as the other work area. The operator is only
concerned with when to switch, not where to switch to.

10.2 Finding Instances of Human Sub-optimality

The focus of this study is on areas where human
decisions to assign machine aids are sub-optimal. The trial
period with SUPER was also used to scout for such areas that
could be explored in depth in the actual experimental phase.

In the trial phase, task parameters and the number of
machines were varied substantially from run to run. Subject
performance, particularly in the area of assigning machines
was examined and the results used to develop hypotheses in
need of further experimentation.

I,
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CHAPTER 11

EXPERIMEN~TAL RESULTS

11.1 Introduction

In man-machine systems considered in this study there
were two distinct aspects to the operator's supervisory
role. The operator first had to search for tasks. Once a
task was found a method of dealing with it had to be
determined. An operator's performance in determining a
search strategy was not necessarily dependent on 'his
performance in deciding whether to do tasks manually or to
assign machine aids.

This study was chiefly concerned with the decision to
assign machines. However, the nature of the experimental
paradigm provided a mechanism for exploring the search
strategies of operators and certain conclusions can be drawn
in this regard.

11.2 The operator's Search Strategies

Depending on the values of task paramceters such as mean
arrival rate and service times, approximately seventy
percent of all the decisions made by subjects involve
changing work areas. Determining where to go next was a
problem faced by the operator very frequently. However,
subjects did not always make the best decisions.

11.2.1 The Effect of Transition Time

The importance of the decision to change work areas was
dependent on the transition time between work areas. If the
transition time was very short a mistake could easily be
corrected. In the limit, a zero transition time is similar
to being able to examine all work areas simultaneously and
having perfect information about task occurances.
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As transition time increases making the right choice
about where to go becomes more and more important.
Ultimately, however, it will be best not to move at all
because transitions take so much time. Whether a given
value for transition time is "long" or "short" depends on
the characteristic time interval (a measure of mean arrival
rates and service times) for the system.

The effort SUPER subjects put into the decision to
change work areas did vary with transition time. For short
transition times subjects employed only the simplest search
algorithms. In the debriefing phase comments such as "I had
no real plan; I just went somewhere else" or "I just cycled
through the work areas in order" were commbn. These curt
remarks indicated subjects placed only minimal importance on
search strategy.

When subjects did care about their search algorithm
they could be very lucid in decribing it. Debriefings were
full of conditional statements along the pattern of: " If I
were in work area B and just assigned a machine I would go
to A unless I had recently completed a task there in which
case I would go to C." The time spent elucidating on search
strategy varied directly with transition time.

Subject performance, as measured by fraction of
operator decisions that agreed with the N-step model, also
varied with transiton time. The optimal model always put
the same effort into its choices regardless of the value of
transition time. Subjects did make more mistakes when they
cared less about the consequences. However, the occasions
on which they cared less about the consequences were those
occasions when the consequences mattered less. Short
transition time mean that mistakes could be corrected
quickly and the impact of an incorrect decision could be
minimized.

In most real life situations the transition time
between work areas is relatively short when compared to task
interarrival times and service times. A pilot scanning
displays looking for problems is limited by how fast he can
shift his glance or move his hands to necessary controls. A
plant supervisor must only take the time to walk from
machine to machine. Exploring subject behavior for long
transition times was not undertaken because, while
interesting, behavior would not have any relevance to
reality.

11.2.2 Human Information Processing Limitations

The search strategy employed by human subjects depended
less on the current condition of the experimental system
than did the model strategy. This is only saying that
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subjects tended to develop a search pattern which they
employed consistently instead of analysing the decision to
change work areas everytime they encounted it.

The N-step model has no memory. Every time it is faced
with a situation requiring a decision it will grind through
its optimizing equations regardless of how many times in the
past it has faced identical, or near-identical, situations.

A human operator can recall similar situations he has
dealt with previously. Additionally he does not have the
information processing capabilities of a computer. It is
not surprizing, therefore, that human subjects develop a
simple search algorithm which they believe has worked well
previously.

In the previous section instances were discussed where
subjects used complicated conditionals in determining where
to transfer to. While such algorithms did depend on the
state of the system they did not explicitly deal with all
possible parameter values. They seldom took more into
account than the last states visited and where the last few
tasks were found.

The search strategy chosen by the operator could be
altered by the experimenter simply by changing the buttons
on the control box which corresponded to the differing work
areas. For cases where there wasn't a big difference
between tasks and where transition time wasn't too important
the subject's search strategy would often be to press
buttons in sequence until a task was found.

The fact that geographic proximity of two work areas
affected search pattern will be of no surprize to any
control panel designer who worries about the effects of
display position on performance. However, the fact that
search strategy could be so easily manipulated lends
credence to the hypothesis that human operators will
sacrifice performance in favor of an easily implemented
strategy.

11.2.3 The Effect of Subjective Probability Estimation

Deciding where to go next will depend on the operator's
belief that a task exists at his intended destination.
There is substantial evidence in the human factors and
psychology literature (e.g. Tversky [26,27]) that implies
that humans overestimate the liklihood of low probability

events and underestimate it for high probability events.

Subjects given experimental situations with one task
class having a very low arrival rate visited that work area
much more often than specified by the optimal model. Even
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when rewards and costs were the same for all work areas
subjects visited a work area with an interarrival time of
100 seconds every twenty-five seconds and a work area with a
ten second interarrival time every five seconds. The
optimal model did not visit the former except at fifty
second intervals.

A very low arrival rate means that a work area should
not be visited too often. Experimentat subjects tended to
develop search strategies that boiled down to a straight
pattern for the more active work areas with transitions to
the low arrival area treated as an afterthought.

Other factors beside probability of task occurance,
such as reward and service time, affect the relative
desirability of work areas. If any general comment can be
made about the way human subjects decide where to go, it is
that they tend to visit the less desirable areas more than
optimal.

11.3 Choosing How to do Tasks

Most of an decisions faced by operators dealt with the
question of where to go next. However, the major component
of performance was how they chose to deal w..th tasks they
did find. The decision to do a task manually or to assign
it to a machine was the central question dealt with in this
study.

11.3.1 Machines That are More Productive Than Their
Supervisors

If a machine can complete a given task class much
faster than the human operator there is no question that the
machine should always be assigned to that task. Not
surprizingly, human operators were willing to acknowledge a
machine's superiority and were willing to take advantage of
it.

There are a variety of ways to model a productive
machine that have differing effects on human behavior. A
machine can be very productive at a given task because it is
specialized. In this case the machine is also very
unproductive at other task classes. Subjects faced with
such a situation assigned machines to those tasks where the
machines were effective and would do the other tasks
manually.

En such a situation human performance in assigning
machines was close to optimal. Any overall sub-optimality
was due to poor search algorithms. In general, though,
search strategies were very good with subjects first
checking those work areas where a machine was clearly
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preferred before undertaking any tasks manually. In this
way they could maximize the time when both the machine and
the human were working concurently.

A second way of modelling a productive machine was to
assume that it was better than the operator at all tasks.
Subjects would then move from work area to work area
assigning the machine whenever a task was found. Because
the machine was so productive it was usually free by the
time a new task was found. If not the subject would wait
for it to become available before proceeding.

Subjects behaved close to optimally when they had such
a superior machine because the machine was so obviously
effective. The operator had to struggle to find tasks to
keep the machine busy. As long as the machine was used
whenever a task is found opportunities to behave
sub-optimally were limited. This scenario was also slightly
unrealistic because such a superior machine should be able
to find its own problems in reality.

An interesting, though slightly unrealistic case, was
where the machine was very good at certain tasks but only
average at others. The operator needed to decide whether or
not to assign the machine to one of the average tasks
knowing that this might tie up the machine and prevent it
from being used where it is clearly superior. However, it
is hard to come up with an example from real life which
corresponds to this choice of parameters.

Subjects reacted to this scenario by never going to the
work area where the machine was superior unless the machine
was free. Otherwise they would assign the machine to other
tasks and hope to find another average task to do
concurrently, though manually. This strategy yielded very
good results in terms of performance based on decisions to
assign tasks. The search pattern chosen by the operator
determined just how close to optimal he came.

In summary, for the case of highly productive machines
human operators did make an effecient allocation of tasks
between themselves and their machine aids. Any deviation
from optimal can be traced to the search strategy employed
or to errors subjects made in applying their strategy.

11.3.2 Men and Machines with Comparable Abilities

Many situations exist in reality where machine aids
perform tasks in roughly the same manner as the men they
replace. The flight computer in an aircraft acts like a
co-pilot who doesn't get bored; it does not fly the plane
any faster or more efficiently than the human pilots. When
men and machine aids have the same productivities for tasks
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it is reasonable to assume that they both carry out the same
steps in dealing with tasks. As a result the man and
machine are directly interchangable and an operator may
start a task himself and then assign it half completed to
his machine aid.

When the experimental situation was set up to reflect
interchangable men and machine aids with similar
productivities human subjects performed very well. A
standard strategy was to search for a task and then assign
it to a machine aid. If no machines were available then the
operator started on the task himself until a machine became
free. The N-step model generated an almost identical
strategy.

A few experiments were conducted where theman and the
machine aids were not interchangealbe. Tasks started
manually could not be transferred to machines. In these
cases the subject would again assign the machine if
available and then do secondary tasks manually. If the
subject felt that other tasks existed on other work areas he
might stop doing the present task, move to the other work
area, assign the machine there, and then return to the
unfinished task. Subjects did this less than would be
indicated by an optimal model but because occasions for this
behavior seldom arose performance was not affected much.

11.3.3 Assigning Low Productivity Machines

The use of low productivity machines is often an option
in industrial systems. Utilities maintain expensive oil
burners to deal with periods of peak demand. Similarly
manufacturers retain old machinery to deal with

contingencies such as new machinery breakdowns or unexpected
orders. It is not unreasonable for a system designer to
supply a human supervisor with an inefficient but cheaply
designed machine to provide emergency system capacity.

The following set of experiments is illustrative of
results obtained concerning human operator use of low
productivity machines. In these experiments an operator was
given two machine aids. One of these machine aids had the
same productivity as the operator in all work areas. The
productivity of the second was scaled down by a factor of X.
When X was one, the second machine was identical to the
first.

Figure 11.1 shows average subject performance as a
function of the relative productivity of the less productive
machine. Two performance measures are used. The first is
the fraction of times, when faced with a task in the current
work area, that the operator chose the same strategy as the
best N-step model. The second measure is a subset of the
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first, and is the fraction of times the model agreed with

the subject when he assigned the less productive machine.

When X, the relative machine priority, was one human
performance is close to perfect by both performance
measures. However, decreasing X reduces performance
drastically. The second measure shows that this reduction
is due to the fact that the model never (for X less than .5)
uses the low productivity machine. The human, however,
resolutely sticks to his old friend and doesn't abandon this
machine until its productivity has dropped down to one fifth
of the human. Ususally when the human wanted to use the low
productivity machine, the model specified that the task be
done manually.

The point was made to subjects that they did not have
to use the machine if they didn't want to. Yet Figure 11.1
shows that they did. When questioned later, subjects seemed
to feel that they would be wasting some of their resources
if they did not use the machine.

A common explanation by subjects for behavior was that
they thought they should assign a low productivity machine
to some task they wouldn't get to often. They could thereby
reduce the number of work areas they had to deal with by
one, at least until the poor machine was finished. While
the poor machine was working the operator would only be
working with his good machine on a reduced system. Making
the system simpler by assigning a slow machine on a work
area and then forgetting about it seemed to be a sensible
goal to many subjects.

Another explanation is that by using the low
productivity machine it was possible to be working on three
tasks at once: two by machine and one manually. Subject
behavior in many diverse situations could be explained by
assuming that subjects wanted to have as much going on at
once as possible.

Subject performance, from Figure 11.1, improves again
when subjects finally decide to give up the slow machine.
At this point subjects are moving from work area to work
area doing tasks manually only when the fast machine is
busy.

The effect of slow machine productivity on strategy is
shown in Figure 11.2. The fraction of times that subjects
and the optimal model would assign the low productivity
machine to do a task is plotted against that productivity
for the same set of experiments used to generate Figure
11.1.

For X equals one both machines are equally effective.
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With two such productive machines the operator did not have
to deal with any tasks manually. The likelihood of using
any one machine for X equal one in therfore 0.5 as is shown
on the graph. The optimal model gives up on the slow
machine almost immediately while the subject continues touse it.

11.3.4 The Impact of Machine Wages on Strategy

Decreasing a machines productivity will make it less
desirable to use. Increasing its wage whould have the same
effect. The net reward for completing a task by machine
equals the final reward minus the service time times the sum
of holding cost and machine wage.

Net Reward = R - (h+w)/u

where u is the service rate.

When the holding cost is zero, a doubling of the
service time (1/u) will have the same effect on net reward
as doubling the machine wage. Both should make the operator
more hesitant to use that particular machine on that
particular task. If either should have a greater effect it
should be the service time. Using a slow machine will tie
up a work area for a long period of time. No new tasks will
appear there and the operator will be unable to realize
their potential rewards. Based on the observed impact of
increased service times on strategy, a reasonable hypothesis
would be that increasing wages would have only a minor
effect on subjects' decision to use machines.

This hypothesis was tested for the same task
environment as was used to generate Figures 11.1 and 11.2.
There was no holding cost and the operator was given two
machines with identical productivities. The wage of one
machine was fixed at one point per second while that of the
second varied up to five points per second.

Figure 11.3 shows subject performance as a ratio of the
two wages. Both overall performance in dealing with tasks
and the fraction of times the model agreed with the operator
when he assigned the expensive machine are plotted.

Performance is much better than observed in the case of
decreasing productivity. Surprizingly, high wages had a
large inhibiting effect on the subjects' use of the
expensive machine. In fact, for a wage ratio of two, the
operator used the machine less than the optimal model.
Every time the operator assigned the costly machine, so did
the model, which is why the second performance measure is
1.0 at that point.
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The impact of high wages on use of the expensive
machine is plotted in Figure 11.4. Though the model

* actually reached zero uses of this machine faster than the
operator, the operator was not far behind. The case where
the model actually used the expensive machine more than the
operator is shown at the wage ratio of two.

It is unclear why machine wage should have had a
greater impact on human behavior than does productivity.
Perhaps it was because during the Task Familiarization Phase
the operator could see just how fast his score started to
drop when he used an expensive machine. In addition, costs
are more tangible to humans than are productivities and
operators may have been more aware of the fact that
expensive machines are "bad" than they were aware that low
productivity machines were.

A system designer may be aware that high wages have a
big impact on human behavior. Unfortunately, in most real
life situations the operator is not really aware of machine
costs. Maintenance, depreciation and ca~pital interest
charges are all counted towards machine costs but they are
all intangible and do not directly impact on the operator.
It is paradoxical that the parameters that effected the
operator most are the ones that the operator don't see.

11.4 Conclusions

For the most part, subjects developed heuristic
strategies that worked reasonably well in most situations.
Mental effort was allocated primarily to those parameters
that seemed to have a big effect on performance.

A general comment is that subjects liked to feel they
were accomplishing something. Having many machines running
simultaneously seemed to many subjects to by a good measure
of performance. This goal seems to have increased the use
of unproductive machines as was noted above. It was also
noted that when a machine was very productive, but only on
one work area, subjects would first check that work area in
hopes of assigning a machine there before going on to other
work areas. In that way the machine would be working if
they found a task to do manually.

41 Subjects exhibited a bias towards the use of available
machine aids. This bias did not affect the use of very
productive machines because they should have been used when
possible. However, this bias manifested itself in the
sub-optimal use of unproductive machines.

.............................. ...........
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CHAPTER 12

CONCLUSIONS AND SUGGESTED FURTHER RESEARCH

12.1 Conclusions From This Study

In this study, experimental subjects were placed in an
environment where tasks appeared requiring service. Machine
aids were provided to increase operator productivity. The
operator in turn assumed a supervisory role searching out
tasks and assigning them to machines. The operator could
also get his hands dirty and complete a task himself, if he
so chose.

Subjects performance in these tasks was compared to an
optimal'model. In the area of searching for tasks from work
area to work area, subjects would resort to a fixed search
pattern or apply a simple heuristic. Subjects could become
very careless in deciding where to look next for tasks.
However this carelessness was usually found only in those
cases where added care would not have lead to improved
performance. Where search strategy was important, subjects
did put more effort into their search algorithm though they
never reached the level of optimal behavior.

Subjects were also found to have an appreciable bias
towards using machine aids when available. Not only would
operators use machine aids that were very productive, they
would use them even when the operator could do tasks much
more efficiently himself.

A system designer worried about how efficiently
operators are going to use any aids they are given should
not be concerned with humans usurping jobs that should go to
machines. Rather he should be concerned with the opposite.
If the operator is supplied with a slow aid for use only
when he is personally overloaded, he may instead the aid
even when his work load is normal or below average.

jg mum
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Human operators can be inhibited from using machine
aids if they are made aware of the true costs involved.
Experiments showed that raising the wage paid to a machine
dramatically reduced the fraction of times it was employed.

It should be noted here that though the experiments
undertaken dealt with machine aids, the results are
applicable to any sort of operator assistance. The co-pilot
in an aircraft is nothing but a very complicated and
autonomous aid to the pilot. In the broadest sense this
report has looked at the general problem of assigning tools
with varying productivities to tasks with varying
requirements.

12.2 Possible Extensions on this Study

The most interesting results of this study dealt with
the use of machine aids that either because of high wages or
low productivity were poor choices to use in completing
tasks. There are other aspects of machines that decrease
their usefulness that were not considered here.

Another feature of machine productivity is the
probability that the machine will successfully complete
tasks it is assigned to. In this study a task assigned to a
machine was as good as done. In many real life situations,
however, machines break down or get stuck. The operator
must assume the supervisory role of checking up on machines
to make sure they are functional. Knowing that he will have
to monitor machines will increase an operator's reluctance
to undertake tasks manually.

Assigning machines in the experimental paradigm
involved simply pressing a button. In reality machines may
require a finite set up time above the actual task
requirements. During this assignment process neither the
machine nor the human are productively employed. Set-up
time will have an effect on machine assignments.

A final modification to the paradigm used in this study
would be not to have finite task queues. An implicit cost
of leaving a task unattended in the present experimental
situation is that the rewards of possible new tasks that
might appear on the occupied work area are foregone. With
infinite queues the costs of assigning a slow machine are
reduced. Because subjects exhibit a bias to the overuse of
machines their performance might improve even if behavior
stays fixed.
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APPENDIX A

MATHEMATICS OF POISSON PROCESSES

A.1 Poisson Processes

Many arrival processes are assumed to have Poisson
distributions. The key feature of a Poisson distribution is
that the likelihood of an event occuring in some small time
interval is exactly equal to the likelihood of an occurance
in any other equally small time interval. There is no
memory in the system. The instantaneous probability that an
event will occur is independent of system history.

If a commuter arrives at a bus stop with no information
about the bus schedule, he has no reason to expect the bus
to be more likely to arrive in exactly ten minutes than to
expect it to arrive immediately. Similarly, a machine is
likely to experience breakdowns that appear to have no
deducable cause. Both bus arrivals and machine breakdowns
can be modeled as having a Poisson distribution.

Poisson distributions are characterized by the
parameter L, the mean rate of event occurances. The
probability that k events will occur within a time interval
t is given by:

k
*(L*t)

Pr[k events in t]=p (t)= exp(-L*t) (A.1)
k ki

A.2 The Exponential Distribution

Another concern in the study of Poisson processes is
the distribution of interarrival times between events. The
interarrival time is the period after one event and before
the next during which nothing happens. The interarrival
time for Poisson processes has an Exponential distribution

/ m~jJ-l nka
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with the same defining parameter L.

EX[t]=L*exp(-L*t) (A.2)

The probability that an event will occur at some time
within an interval T is simply the integral of EX~t) over
all values of t between 0 and T. This probability of
occurance is signified by PO(T,l), or by PO(T) in other
sections of this paper.

T

PO(T,l) = PO(T) =fEXit] dt
0

PO(T) = 1 - exp(-L*T) (A.3)

A.3 Formulae with Holding Cost

In certain sections of this paper tasks with
Exponential interarrival times exact a holding cost h for
each unit of time they are unattended. Consider the
following related scenario. At time 0, no events have
occured and an operator turns his attention elsewhere. At
time T he notices that an event has indeed occured as some
past time. What is the expected net cost of this task up to
time T ?

The expected cost of an event over time T, given that
the event has indeed occured, is simply the integral over
all values of t between 0 and T of the cost of the event
occuring at t [i.e. h*(T-t)] times the probability that the
event actually occured at t. This quantity is normalized by
the probability that the event did occur in T.

Expected cost given event occurance, E (T,L)
cIo

EX(t)*h*(T-t) dt
E (T, L) = 0
CIo PO(T,L)

(h/L)*[L*T+exp(-L*T)-l]
E (T,L) = (A.4)
cIo 1 - exp(-L*T)

t
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APPENDIX B

LISTINGS OF COMPUTER PROGRAMS

The programming and experiments for this study were
conducted on a PDP 11/34 in the Man-Machine Systems
Laboratory at the Massachusetts Institute of Technology.
The visual interface with subjects was provided by a Megatek
7000 Vector Graphic Display.

The computer language RATFOR was used for most of the
programming. RATFOR is a language based on FORTRAN, but
which adds modern control structures including IF-ELSE,
WHILE, and REPEAT-UNTIL. RATFOR is considered by its
creators to be a RATional FORtran; hence its name.
Explanations of both the design and structure of RATFOR
programs can be found in Software Tools by Kerighan and
Plaugher (Addison-Wesley, Don Mills, Ontario, 1976).

The following is an alphabetized list of major programs
used in this study plus brief descriptions of their
functions. Actual listings of these programs are available
from the Man-Machine Systems Laboratory at M.I.T..

BINARY: Converts a decimal number into its binary
equivalent (used in TCST)

BOXCLR: This program places actual experimental
subjects in the environment of certainty described
in Ch. 6

BSETUP: Sets up the series of 96 experiments with
BOXCLR described in Ch. 6

BXPERF: This program takes operator strategies from
BOXCLR as specified by BSETUP and compares them to
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all possible strategies in order to generate
performance mearsures

CHKPOL: Compares actual operator decisions from SUPER
to the N-step model presented in Ch. 7

CMMND: Takes operator commands from the Contol Box
shown in Ch. 5 (used in SUPER and BOXCLR)

DISPLY: Displays Score and Time of and experiment on
the Megatek display (used in SUPER and BOXCLR)

DRAWI: A system subroutine that draws a line on the
Megatek dislay to to point (x,y)

DRWFLD: Draws the SUPER playing field on the Megatek
display (used in SUPER)

DRWMAC: Draws machine aids on the Megatek display
(used in SUPER)

DRWSCR: Draws the outlines for the SUPER Megatek
display (used in SUPER)

DRWTXT: Draws most of the text for SUPER experiments
on the Megatek display (used in SUPER)

ECO: Computes the expected holding cost incurred by
not looking at a work area for T seconds, assuming
a task does appear there (used in GEN)

GEN: Generates the transition probabilities, reward
matrix, and state transition times for the Markov
model in Ch. 5 (used in RPTH2W)

HEADER: Places a header showing time, date and a title
on the output files from experiments (used in
SUPER)

LDTRN3: A system subroutine which translates and
scales all subsequent commands in the Megatek
display buffer

HSTGRM: Computes the histogram of the costs of all
possible strategies for BOXCLR (used in BXPERF)

MGSEND: A system subroutine which sends a set of
Megatek commands to the Megatek display buffer

MOVEI: A system subroutine that moves the current
position of the Megatek display sequence to the
point (x,y)

..- . .....
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MPRD: Takes the product of two 4x4 matrices (used in
RPTH2W)

ORD: Orders the elements of an array in a
monatonically increasing sequence (used in BSETUP
and BXPERF)

PO: Computes the probability a task will appear within
T second (used in GEN)

POLCY: Determines the best decision for the N-step
model presented in C!,. 7. A seperate version of
POLCY is required for each level of the N-step
search. A 3-level example is included in this
appendix (used in STRATP and CHKPOL)

RDRAWI: A system subroutine that draws a line on the
Megatek display to a point relative to the current
point in the display list

RMOVEI: A system subroutine that performs a relative
move to the current point in te Megatek display
buffer

RPTH2W: Computes the reward per unit time for the
two-work-area / no-machine Markov model as a
function of the critical transfer probability, PC
(used in XH2W)

RPTMNW: Computes the reward per unit time for the
N-work-area / M-machine model through simulation
(used in XMNW)

SETINT: A system subroutine that sets the intensity of
subsequent lines drawn on the Megatek display

STRATP: Simulates an operator using N-step model
described in Ch. 7 (used in RPTMNW)

SUPER: This program places an experimental subject in
a supervisory role over machines. Tasks appear in
different work areas and must be dealt with.
SUPER is described more fully in Ch. 5

TCST: Computes the total cost of a strategy for BOXCLR
as described in Ch. 6 (used in HSTGRM and BXPERF)

XH2W: Finds the optimal value of PC in the Markov
model presented in Ch. 5

XMNW: Explores the case of M machines and N work areas
through simulation, as described in Ch. 7

I
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